Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T22:46:02.432Z Has data issue: false hasContentIssue false

Refinement of the Structure of Natural Ferriphlogopite

Published online by Cambridge University Press:  28 February 2024

Maria Franca Brigatti
Affiliation:
Dept. of Earth Sciences. University of Modena-Largo S. Eufemia, 19-41100 Modena, Italy
Luca Medici
Affiliation:
Dept. of Earth Sciences. University of Modena-Largo S. Eufemia, 19-41100 Modena, Italy
Luciano Poppi
Affiliation:
Dept. of Earth Sciences. University of Modena-Largo S. Eufemia, 19-41100 Modena, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two ferriphlogopite-1M crystals with a composition (K0.99Na0.01)Σ=1.00(Mg2.73Fe2+0.17Fe3+0.08-Ti0.01)Σ=2.299[(Fe3+0.95Si3.05)Σ=4.00O10.17](OH)1.79F0.04 (sample S1) and (K1.02)Σ=1.02(Mg2.68Fe2+0.20Fe3+0.11-Mn0.01)Σ=3.00[(Fe3+0.95Si3.05)Σ=4.00O10.18](OH)1.75F0.07 (sample S2) occur within an alkali-carbonatic complex near Tapira, Belo Horizonte, Minas Gerais, Brazil. Each crystal was studied by single-crystal X-ray diffraction. The least-squares refinements of space group C2/m resulted in R values of 0.031 for S1 and 0.025 for S2. Results showed that Fe3+ substitutes for Si within the tetrahedral sites and that the Fe distribution is fully disordered. The octahedral sites are preferentially occupied by Mg. The presence of Fe3+ within the tetrahedral sheet produces increased cell edge lengths. For sample S1, a = 5.362 Å, b = 9.288 Å, c = 10.321 Å and the monoclinic β angle was: β = 99.99°. For sample S2, a = 5.3649 Å, b = 9.2924 Å, c = 10.3255 Å and the monoclinic β angle was: β = 99.988°. The tetrahedral rotation angle of α = 11.5° is necessary for tetrahedral and octahedral sheet congruency. The enlarged tetrahedral sites are regular, with cations close to their geometric center. Ferriphlogopites have identical mean bond lengths for M1 and M2 sites within standard deviation. The M1-O3 and M2-O3 bond lengths are longer than the mean so that O3 may articulate with the tetrahedra.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

References

Alietti, E., Brigatti, M.F. and Poppi, L.. 1995. The crystal structure and chemistry of high-aluminum phlogopites. Mineral Mag 59: 149157.CrossRefGoogle Scholar
Bailey, S.W.. 1988. X-ray diffraction identification of the poly-types of mica, serpentine, and chlorite. Clays & Clay Miner 36: 195213.CrossRefGoogle Scholar
Beurlen, H. and Cassadanne, J.P.. 1981. The brazilian mineral resources. Earth Sci Rev 17: 177206.CrossRefGoogle Scholar
Bigi, S. and Brigatti, M.F.. 1994. Crystal chemistry and micro-structures of plutonic biotite. Am Mineral 79: 6372.Google Scholar
Brigatti, M.F. and Davoli, P.. 1990. Crystal structure refinement of 1M plutonic biotites. Am Mineral 75: 305313.Google Scholar
Brigatti, M.F., Medici, L., Saccani, E. and Vaccaro, C.. 1995. Phlogopites from the Alkaline-Carbonatite Complex of Tapira (Brazil): implications for their petrogenetical significance. Plinius 14: 8486.Google Scholar
Busing, W.R., Martin, K.O. and Levi, H.S.. 1962. ORFLS a FORTRAN crystallographic least-squares program. U.S. National Technical Information Service ORNL-TM-305.CrossRefGoogle Scholar
Cruciani, G. and Zanazzi, P.F.. 1994. Cation partitioning and substitution mechanisms in 1M-phlogopite: a crystal chemical study. Am Mineral 78: 289301.Google Scholar
Donnay, G., Donnay, J.D.H. and Takeda, H.. 1964. Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Cryst 17: 13741381.CrossRefGoogle Scholar
Donnay, G., Morimoto, N., Takeda, H. and Donnay, D.H.. 1964. Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica. Acta Cryst 17: 13691373.CrossRefGoogle Scholar
Dyar, M.D.. 1990. Mössbauer spectra of biotite from meta-pelites. Am Mineral 75: 656666.Google Scholar
Farmer, G.L. and Boettcher, A.L.. 1981. Petrologic and crystal chemical significance of some deep-seated phlogopites. Am Mineral 66: 11541163.Google Scholar
Foley, S.F.. 1989. Experimental constraints on phlogopite chemistry in lamproites: I. The effect of water activity and oxygen fugacity. Eur J Mineral 1: 411426.CrossRefGoogle Scholar
Guggenheim, S., Chang, Y.-H. and Koster van Groos, A.F.. 1987. Muscovite dehydroxylation: High-temperature studies. Am Mineral 72: 537550.Google Scholar
Guidotti, C.V. and Dyar, M.D.. 1991. Ferric iron in metamorphic biotites and its petrologic and crystallochemical implications. Am Mineral 76: 161175.Google Scholar
Hazen, R.M. and Burnham, C.W.. 1973. The crystal structures of one-layer phlogopite and annite. Am Mineral 58: 889900.Google Scholar
Hazen, R.M., Finger, L.W. and Velde, D.. 1981. Crystal structure of a silica and alkali-rich trioctahedral mica. Am Mineral 66: 586591.Google Scholar
Jakob, J.. 1925. X. beiträge zur chemischen konstitution der glimmer. I. Mitteilung die schwedischen manganophylle. Z Kristallogr 61: 155163.CrossRefGoogle Scholar
Joswig, W.. 1972. Neutronenbeugungsmessungen an einem 1M-Phlogopit. N. Jahrbuch f. Mineralogie Monatshefte 111.Google Scholar
Meyrowitz, R.. 1970. New semimicroprocedure for determination of ferrous iron in refractory silicate minerals using a sodium metafluoborate decomposition. Anal Chem 42: 11101113.CrossRefGoogle Scholar
Neal, C.R. and Taylor, L.A.. 1989. The petrography and composition of phlogopite micas from the Blue Ball kimberlite, Arkansas: a record of chemical evolution during crystallization. Mineral & Petrol 40: 207224.CrossRefGoogle Scholar
Ohta, T., Takeda, H. and Takéuchi, Y.. 1982. Mica polytypism: similarities in the crystal structures of coexisting 1M and 2M1 oxybiotite. Am Mineral 67: 298310.Google Scholar
Rancourt, D.G., Christie, I.A.D., Royer, M., Kodama, H., Robert, J.L., Lalonde, A.E. and Murad, E.. 1994. Determination of accurate [4]Fe3+, [6]Fe3+, and [6]Fe2+ site populations in synthetic annite by Mössbauer spectroscopy. Am Mineral 79: 5162.Google Scholar
Rancourt, D.G., Dang, M.Z. and Lalonde, A.E.. 1992. Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. Am Mineral 77: 3443.Google Scholar
Renner, B. and Lehmann, G.. 1986. Correlation of angular and bond length distortions in TO4 units in crystals. Z Kristallogr 175: 4359.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H.. 1971. Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172: 567570.CrossRefGoogle ScholarPubMed
Semenova, T.F., Rozhdestvenskaya, I.V. and Frank-Kamenetskii, V.A.. 1977. Refinement of crystal structure of tetraferriphlogopite. Soviet Phys Crystall 22: 680683.Google Scholar
Semenova, T.F., Rozhdestvenskaya, I.V., Frank-Kamenetskii, V.A. and Pavlishin, V.I.. 1983. Crystal structure of tetraferriphlogopite and tetraferribiotite. Mineral Z 5: 4149 (in Russian).Google Scholar
Siemens 1993. XSCANS System—Technical reference Siemens Analytical X-ray Instruments.Google Scholar
Steinfink, H.. 1962. Crystal structure of a trioctahedral mica phlogopite. Am Mineral 47: 886896.Google Scholar
Takeda, H. and Ross, M.. 1975. Mica polytypism: dissimilarities in the crystal structures of coexisting 1M and 2M1 biotite. Am Mineral 60: 10301040.Google Scholar
Toraya, H.. 1981. Distortions of octahedra and octahedral sheets in 1M micas and the relation to their stability. Z Kristallogr 157: 173190.Google Scholar