Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T08:21:45.284Z Has data issue: false hasContentIssue false

Reactivity of Clay Minerals With Acids and Alkalies

Published online by Cambridge University Press:  01 July 2024

Dorothy Carroll
Affiliation:
U.S. Geological Survey, Menlo Park, Calif. 94025; Denver, Colo. 80225
Harry C. Starkey
Affiliation:
U.S. Geological Survey, Menlo Park, Calif. 94025; Denver, Colo. 80225
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6·45 N, 1: 1), acetic acid (4·5 N, 1: 3), sodium hydroxide (2·8N), sodium chloride solution (pH 6·10; Na = 35‰; Cl = 21·5‰), and natural sea water (pH 7·85; Na = 35·5‰; Cl = 21·5‰) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective.

Résumé

Résumé

Des échantillons d'un gramme d'une montmorillonite, d'une métabentonite, d'une illite, de deux kaolinites et de trois halloysites ont été traités avec 50 ml d'acide chlorhydrique (6,45N 1: 1), d'acide acétique (4,5N 1: 3), de soude (2,8N), d'une solution de chlorure de sodium (pH 6,10; Na = 35‰; Cl = 21,5‰ et d'eau de mer naturelle (pH 7,85; Na 35,5‰; Cl = 21,5‰), pendant une période de 10 jours dans des fioles de plastique bouchées. Les solutions surnageantes ont été séparées des minéraux argileux et l'on en a déterminé par analyse les teneurs en SiO2, Al2O3, CaO, MgO, Na2O, Na2O et K2O. Toutes les solutions extraient des échantillons une certaine quantité de SiO2, Al2O3 et Fe2O3, mais les quantités sont petites. L'attaque par l'hydroxyde de sodium des minéraux du groupe du kaolin est plus intense que celle de la montmorillonite, de la méabentonite ou de l'illite. L'halloysite a été attaquée par l'acide chlorhydrique plus fortement que n'importe quel autre des minéraux étudiés. L'acide chlorhydrique fait disparaitre les oxydes de fer de recouvrement des minéraux argileux du sol, mais l'action de l'acide acétique n'est pas complète. Les échantillons les plus fortement attaqués par HCl et NaOH ont été examinés par diffraction X. Le traitement acide ne détruit pas la structure des argiles, mais la structure de l'halloysite a été partiellement détruite. L'hydroxyde de sodium attaque la structure de l'halloysite comme le montrent l'analyse chimique et la diffraction X. Ces expériences montrent que le traitement par les acides dilués n'a pas d'effet nuisible dans la préparation des argiles pour la diffraction X. Pour cet usage, on préfère l'acide acétique à l'acide chlorhydrique. L'acide chlorhydrique nettoie les minéraux argileux en faisant disparaitre de la surface l'oxyde de fer libre; l'acide acétique est moins efficace.

Kurzreferat

Kurzreferat

Eingrammproben von Montmorillonit, einem Metabentonit, einem Illit, zwei Kaoliniten und drei Halloysiten wurden mit 50 ml Salzsäure (6,45N, 1: 1), Essigsäure (4,5N, 1:4), Natriumhydroxyd (2,8N), Natriumchloridlösung (pH 6,10: Na = 35‰; Cl = 21,5‰) und natürlichem Meerwasser (pH 7,85; Na = 35,5‰; Cl = 21,5‰) über einen Zeitraum von 10 Tegen in zugestopften Kunststoff-Phiolen behandelt. Die überstehenden Lôsungen wurden von den Tonnineralen entfernt und auf SiO2, Al2O3, CaO, MgO, Na2O und K2O analysiert. Alle die Lösungen entfernten etwas SiO2, Al2O3 und Fe2O3 aus den Proben, doch handelte es sich um mengenmässig kleine Beträge. Natrium hydroxyd griff die Minerale der Kaolingruppe stärker an als den Montmorillenit, Metabentonit oder Illit. Der Halleysit wurde durch Salzsäure stärker angegriffen als irgendeines der anderen Versuchsminerale. Salzsäure entfernte Eisenoxydbelage von Eodentonmineralen, jedoch wurden dieselben durch Essigsäure nicht vollständig entfernt. Die am stärksten von HCl und NaOH angegriffenen Proben wurden durch Röntgenbeugung untersucht. Die Säurebehandlung zerstörte das Gefüge der Tone nicht, während die Halloysitstruktur teilweise zerstört wurds. Wie aus der chemischen Analyse und der Röntgenbeugung ersichtlich, wurde die Halloysitstruktur durch Natriumhydroxyd angegriffen. Diese Versuche zeigen, dass eine Behandlung mit verdünnten Säuren keine schädliche Wirkung bei der Vorbereitung der Tone für Röntgenbeugung ausübt. Essigsäure wird für diesen Zweck gegenüber Salzsäure vorgezogen. Die Salzäure säubert Tonminerale durch Entfernung des freien Eisenoxyds von der Oberfläche; Essigsäure ist in dieser Hinsicht weniger wirksam.

Резюме

Резюме

Обработке 50 мл растворов НС1 (6,45 ТЧ; 1:1), уксусной кислоты (4,5 N; 1:3), NаОН (2,8 N), NaСl (рН 6,10; Na = 35%o; Сl = 21,5%0) и морской водой (рН 7,85; N3 = 35,5%o; Cl = 21,5%„) в течение 10 дней в закрытых пластиковых бутылочках были подвергнуты по 1 г. монтмориллонита, метабентонита, иллита, двух каолинитов и трех галлуазитов. Раствор над осадком подвергался анализу на SiO2, А12O3, СаО, МgО, Nа20, К2O. Во всех растворах обнаружены извлеченные из глинистых минералов SiO2, А12Оэ и Fе2Оэ, но в небольших количествах. №ОН воздействовал на минералы каолиновой группы сильнее, чем на монт-мориллонит, метабентонит или иллит. На галлуазит НСl оказывала более сильное действие, чем на другие глинистые минералы. НСl удаляла пленки окислов с почвенных глинистых минералов, а уксусная кислота не оказывала на них никакого воздействия. Образцы, испытавшие наиболее сильное воздействие НС1 и ИаОН, были изучены рентгеновским методом. Оказалось, что кислотная обработка не разрушила структуры глин, но структура галлуазита испытала некоторое изменение. ИаОН вызвал изменение структуры галлуазита как следует из данных химических анализов и из рентгеновских диффракционных картин. Эксперименты показали, что обработка разбавленными кислотами не оказывает вредного влияния на приготовление глин для рентгеновского анализа. Уксусная кислота для этого более пригодна, чем соляная. НСl очищает глинистые минералы, удаляя с их поверхности окислы железа; уксусная кислота менее эффективна.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

Footnotes

*

Publication authorized by the Director, U.S. Geological Survey.

Deceased, January 30, 1970.

References

Aldrich, D. G. and Buchanan, J. R., (1958) Anomalies in techniques for preparing H-bentonites Soil Sci. Soc. Am. Proc. 22 281285.CrossRefGoogle Scholar
Bradley, W. F., (1945) Diagnostic criteria for clay minerals Am. Mineralogist 30 704713.Google Scholar
Brindley, G. W., (1966) Discussions and recommendations concerning the nomenclature of clay minerals and related phyllosilicates Clays and Clay Minerals 14 2734.CrossRefGoogle Scholar
Carroll, D., (1960) Carbon dioxide and alumina in the Potentiometrie titration of H-montmorillonite U.S. Geol. Survey Prof. Paper 400 436438.Google Scholar
Carroll, D. and Starkey, H. C., (1960) Effect of sea water on clay minerals Clavs and Clay Minerals 7 80101.Google Scholar
Deb, B. C., (1950) The estimation of free iron oxides in soils and clays and their removal J. Soil Sci. 1 212220.CrossRefGoogle Scholar
Foster, M. D., (1951) Geochemical studies of clay minerals —I. The importance of the exchangeable magnesium and cation-exchange capacity in the study of montmorillonitic clays Am. Mineralogist 36 717730.Google Scholar
Foster, M. D., (1953) Geochemical studies of clay minerals — III. The determination of free silica and free alumina in montmorillonites Geochim. et Cosmochim. Acta 3 143154.CrossRefGoogle Scholar
Garrels, R. M. and Thompson, M. E., (1962) A chemical model for sea water at 25°C and one atmosphere total pressure Am. J. Sci. 260 5766.CrossRefGoogle Scholar
Griffin, J. J., Windom, H. and Goldberg, E. D., (1968) The distribution of clay minerals in the World Ocean Deep-Sea Res. 15 433459.Google Scholar
Grim, R. E., (1953) Clay Mineralogy. New York McGraw-Hill.CrossRefGoogle Scholar
Mackenzie, F. T. and Garrels, R. M., (1965) Silicates-Reactivity with sea water Science 150 5758.CrossRefGoogle ScholarPubMed
Mackenzie, F. T., Garrels, R. M., Bricker, O. P. and Bickley, F., (1967) Silica in sea water: control by silica minerals Science 155 14041405.CrossRefGoogle ScholarPubMed
Mikherjee, J. N., Chatterjee, B. and Banerjee, B. M., (1947) Liberation of hydrogen, aluminum, and ferric ions from hydrogen clays by neutral salts J. Colloid Sci. 2 247256.CrossRefGoogle Scholar
Mukherjee, J. N., Catterjee, B. and Ray, A., (1948) Liberation of hydrogen, aluminum, and ferric ions from pure clay minerals on repeated salt treatment and de-saturation J. Colloid Sci. 3 437445.CrossRefGoogle Scholar
Murray, H. H., (1951) The structure of kaolinite and its relation to acid treatment. Urbana, Illinois Ph.D. thesis, University of Illinois.Google Scholar
Nash, V. E. and Marshall, C. E., (1956) The surface reactions of silicate minerals —I. The reactions of feldspar surfaces with acidic solutions University Missouri, Coll. Agr. Expt. Sta. Res. Bull. .Google Scholar
Nash, V. E. and Marshall, C. E., (1956) The surface reactions of silicate minerals —II. Reactions of feldspar surfaces with salt solutions University Missouri, Coll. Agr. Expt. Sta. Res. Bull. .Google Scholar
Nutting, P. G., (1943) The action of some aqueous solutions on clays of the montmorillonite group U.S. G eoi. Survey Prof. Paper 197 219235.Google Scholar
Paver, H. and Marshall, C. E., (1934) The role of aluminum in the reactions of the clays Chem. Indus 750760.Google Scholar
Pommer, A. M., (1963) Relation between dual acidity and structure of H-montmoriiionite U.S. Geol. Survey Prof. Paper SM-C .CrossRefGoogle Scholar
Ray, S., Gault, H. R. and Dodd, C. G., (1957) The separation of clay minerals from carbonate rocks Am. Mineralogist 42 681686.Google Scholar
Ross, C. S. and Hendricks, S. B., (1945) Minerals of the montmorillonite group, their origin and relation to soils and clays U.S. Geol. Survey Prof. Paper 205 2379.Google Scholar
Shapiro, Leonard and Brannock, W. W. (1962) Rapid analysis of silicate, carbonate, and phosphate rocks: U.S. Geol. Survey Bull. 1144-A, 56 pp.Google Scholar
Siever, R., Beck, K. C. and Berner, R. A., (1965) Composition of interstitial waters of modern sediments J. Geology 73 3973.CrossRefGoogle Scholar
Sillén, L. G., (1961) The physical chemistry of sea water Oceanography. Am. Assoc. Adv. Sci. Publ. 67 549581.Google Scholar
Yoder, H. S. Jr and Eugster, H. P., (1955) Synthetic and natural muscovites Geochim. et Cosmochim. Acta 8 225280.CrossRefGoogle Scholar