Published online by Cambridge University Press: 28 February 2024
Calcite crystals exposed to clay volatiles react with some components of these volatiles, giving rise to a variety of surface morphologies. F, Cl, and S in different proportions were detected by electron microprobe analysis of the calcite surfaces. Under identical experimental conditions, volatiles from every clay mineral examined caused a specific morphology and chemical composition of the calcite surfaces, but these varied with temperature of the calcite. Changes in pH values and mass spectra of the volatiles after passage through calcite demonstrate that even on rapid heating some clay volatile-calcite reactions occur at temperatures as low as 150°C. Species other than those detectable by electron microprobe analysis also participate in the reactions in which CO2 is liberated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.