Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T20:21:23.459Z Has data issue: false hasContentIssue false

Quantitative Measurement of Paramagnetic Fe3+ in Kaolinite

Published online by Cambridge University Press:  28 February 2024

Etienne Balan*
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP, Case 115, 4 Place Jussieu, 75252, Paris cedex 05, France
Thierry Allard
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP, Case 115, 4 Place Jussieu, 75252, Paris cedex 05, France
Bruno Boizot
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP, Case 115, 4 Place Jussieu, 75252, Paris cedex 05, France
Guillaume Morin
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP, Case 115, 4 Place Jussieu, 75252, Paris cedex 05, France
Jean-Pierre Muller
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP, Case 115, 4 Place Jussieu, 75252, Paris cedex 05, France Institut de Recherche pour le Développement (IRD), 213 rue Lafayette, 75480 Paris cedex 10, France
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method is proposed to measure the absolute concentration of paramagnetic Fe3+ ions in kaolinite from various geochemical environments using powder X-band electron paramagnetic resonance (EPR) data. An Fe3+-doped corundum sample is used as a concentration standard. The Fe3+ signal is calibrated by calculating the powder EPR spectra of Fe3+ ions in corundum and low-defect kaolinite. The paramagnetic Fe3+ concentration in other samples is obtained by an extrapolation procedure. This study provides a direct assessment of the iron distribution between isolated structural Fe3+ ions and other iron species, such as Fe3+ concentrated phases and Fe2+ ions. The concentration of isolated structural Fe3+ ranges between 200–3000 ppm and represents less than half of the total iron within kaolinite crystals.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Allard, T. Muller, J.-P. Dran, J.-C. and Menager, M.-T., 1994 Radiation-induced paramagnetic defects in natural kaolinites: Alpha dosimetry with ion beam irradiation Physics and Chemistry of Minerals 21 8596 10.1007/BF00205219.CrossRefGoogle Scholar
Balan, E. Allard, T. Boizot, B. Morin, G. and Muller, J.-P., 1999 Structural Fe3+ in natural kaolinites: New insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies Clays and Clay Minerals 47 605616 10.1346/CCMN.1999.0470507.CrossRefGoogle Scholar
Bogle, G.S. and Symmons, H.F., 1959 Paramagnetic resonance of Fe3 in sapphyre at low temperatures Proceedings of the Physical Society 73 531532 10.1088/0370-1328/73/3/425.CrossRefGoogle Scholar
Boizot, B., 1996 Cristallochimie des éléments de transition fer, chrome et manganèse dans les alumines techniques .Google Scholar
Bonnin, D. Muller, S. and Calas, G., 1982 Le fer dans les kaolins. Etude par spectrométries RPE, Mossbauer, EXAFS Bulletin de Minéralogie 105 467475.CrossRefGoogle Scholar
Brindley, G.W. Kao, C.-C. Harrison, J.L. Lipsicas, M. and Raythatha, R., 1986 Relation between structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Calas, G. and Hawthorne, F.C., 1988 Electron paramagnetic resonance Spectroscopic Methods in Mineralogy and Geology, Volume 18, Reviews in Mineralogy 513571 10.1515/9781501508974-014.CrossRefGoogle Scholar
Cases, J.-M. Liétard, O. Yvon, J. and Delon, J.-F., 1982 Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées Bulletin de Minéralogie 105 439455.CrossRefGoogle Scholar
De Biasi, R.S. and Rodrigues, D.C.S., 1983 Influence of iron concentration and particle size on the ESR linewidth of Al2O3:Fe3+ powders Journal of Material Science Letter 2 210212 10.1007/BF00725622.CrossRefGoogle Scholar
Delineau, T., 1994 Les argiles kaoliniques du Bassin des Charentes (France): Analyses typologique, cristallo-chimique, spéciation du fer et applications .Google Scholar
Delineau, T. Allard, T. Muller, J.-R. Barres, O. Yvon, J. and Cases, J.-M., 1994 FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays and Clay Minerals 42 308320 10.1346/CCMN.1994.0420309.CrossRefGoogle Scholar
Gaite, J.-M. Ermakoff, P. and Muller, J.-P., 1993 Characterization and origin of two Fe3+ EPR spectra in kaolinite Physics and Chemistry of Minerals 20 242247 10.1007/BF00208137.CrossRefGoogle Scholar
Gaite, J.-M. Ermakoff, P. Allard, T.h. and Muller, J.-P., 1997 Paramagnetic Fe3+: A sensitive probe for disorder in kaolinite Clays and Clay Minerals 45 496505 10.1346/CCMN.1997.0450402.CrossRefGoogle Scholar
Giese, R.F. Jr and Bailey, S.W., 1988 Kaolin minerals: Structures and stabilities Hydrous Phyllosilicates (Exclusive of Micas), Volume 19, Reviews in Mineralogy Chelsea, Michigan Mineralogical Society of America 2966 10.1515/9781501508998-008.CrossRefGoogle Scholar
Goodman, B.A. Hall, P.L. and Wilson, M.J., 1994 Electron paramagnetic spectroscopy Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman and Hall 173225 10.1007/978-94-011-0727-3_5.CrossRefGoogle Scholar
Hall, P.L., 1980 The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties Clay Minerals 15 321335 10.1180/claymin.1980.015.4.01.CrossRefGoogle Scholar
Lucas, Y. Chauvel, A. Ambrosi, J.P., Rodriguez-Clemente, R. and Tardy, Y., 1987 Processes of aluminium and iron accumulation in latosols developed on quartz rich sediments from central Amazonia (Manaus, Brazil) Proceedings of the International Meeting on Geochemistry of the Earth Surface and Processes of Mineral Formation, Granada, Spain Madrid Consejo Superior de Investigaciones Cientificas 289299.Google Scholar
Malengreau, N. Muller, J.-P. and Calas, G., 1994 Fe-speciation in kaolins: A diffuse reflectance study Clays and Clay Minerals 42 137147 10.1346/CCMN.1994.0420204.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L., 1960 Fe oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate Clays and Clay Minerals 7 317327 10.1346/CCMN.1958.0070122.CrossRefGoogle Scholar
Morin, G. and Bonnin, D., 1999 Modeling EPR powder spectra using numerical digonalization of the spin Hamiltonian Journal of Magnetic Resonance 136 176199 10.1006/jmre.1998.1615.CrossRefGoogle ScholarPubMed
Muller, J.P. Bocquier, G., Schultz, L.G. van Olphen, H. and Mumpton, F.A., 1987 Textural and Mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon Proceedings of the International Clay Conference, Denver, 1985 Bloomington, Indiana The Clay Minerals Society 186196.Google Scholar
Muller, J.P. and Calas, G., 1989 Tracing kaolinites through their defect centers. Kaolinite paragenesis in a laterite (Cameroon) Economic Geology 84 694707 10.2113/gsecongeo.84.3.694.CrossRefGoogle Scholar
Muller, J.P. Calas, G., Murray, H.H. Bundy, W. and Harvey, C., 1993 Genetic significance of paramagnetic centers in kaolinites Kaolin Genesis and Utilization Boulder, Colorado The Clay Minerals Society 261289.Google Scholar
Muller, J.-P. Manceau, A. Calas, G. Allard, T. Ildefonse, P. and Hazemann, J.-L., 1995 Crystal-chemistry of kaolinite and Fe-Mn oxides: Relation with formation conditions of low-temperature systems American Journal of Science 295 11151155 10.2475/ajs.295.9.1115.CrossRefGoogle Scholar
Murad, E. and Wagner, U., 1991 Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: New results and a reappraisal of published work Neues Jahrbuch für Mineralogie Abteilung 162 281309.Google Scholar
Olhoeft, G.R. and Touloukian, Y.S., 1981 Electrical properties of rocks Physical Properties of Rocks and Minerals. London MacGraw Hill 257330.Google Scholar
Petit, S. and Decarreau, A., 1990 Hydrothermal (200°C) synthesis and crystal chemistry of iron rich kaolinites Clay Minerals 25 181196 10.1180/claymin.1990.025.2.04.CrossRefGoogle Scholar
Schroeder, P.A. and Pruett, R.J., 1996 Fe ordering in kaolinites: Insights from 29Si and 27Al MAS NMR spectroscopy American Mineralogist 81 2638 10.2138/am-1996-1-204.CrossRefGoogle Scholar
Schroeder, P.A. Pruett, R.J. and Hurst, V.J., 1998 Effects of secondary iron phases on kaolinite 27Al MAS NMR spectra Clays and Clay Minerals 46 429435 10.1346/CCMN.1998.0460407.CrossRefGoogle Scholar
Shannon, R.D. and Rossman, G.R., 1992 Dielectric constants of silicate garnets and the oxide additivity rule American Mineralogist 77 94100.Google Scholar
van Olphen, H. and Fripiat, J.J., 1979 Data Handbook for Clay Materials and Other Non-Metallic Minerals Oxford, New York Pergamon Press.Google Scholar
Weil, J.A. Wertz, J.E. and Bolton, J.R., 1994 Electron Spin Resonance. Elementary Theory and Practical Applications New York Chapman and Hall.Google Scholar