Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T02:50:31.730Z Has data issue: false hasContentIssue false

Quantitative Estimation of Kaolinite in Sediments by Differential Infrared Spectroscopy

Published online by Cambridge University Press:  01 July 2024

J.-M. Rousseaux*
Affiliation:
Department of Soil Science, Macdonald College of McGill University, Montreal, Québec, Canada
*
*Present address: CEMSTOBEL S.A. 59, rue du Canal, 1000, Brussels, Belgium.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An infrared method has been developed for estimating kaolinite in sediments. Hydroxyl stretching bands of kaolinite in sediments can be recorded by using a differential technique which eliminates the overlapping owing to other mineralic constituents present. By adding known amounts of an appropriate standard to the sample and by measuring intensities of the OH bands before and after the addition it is possible to calculate the proportion of kaolinite in the test sample. The choice of the added standard is made from characteristic features of the hydroxyl stretching bands.

Резюме

Резюме

Инфракрасный метод был разработан для оценки количества каолинита в осадках. Гидроксильные растянутые полосы каолинита в осадках могут быть обнаружены с дифференциальной техники, которая устраняет влияние других присутствующих минеральных образований. Добавляя к образцу известное количество надлежащего эталона и замеряя интенсивности полос ОН до и после добавления эталона, удается вычислить долю каолинита в изучаемом образце.Выбор добавляемого эталона зависит от характерных черт гидроксильных растянутых полос.

Kurzreferat

Kurzreferat

Eine Infrarotmethode für die Bestimmung von Kaolinit in Sedimenten ist entwickelt worden. Hydroxylstreckschwingungen von Kaolinit in Sedimenten können, durch den Gebrauch einer Differentialtechnik, angezeigt werden, die das Überlappen durch andere anwesende, mineralische Bestandteile, eliminiert. Indem bekannte Mengen eines angemessenen Standarts zu der Probe gegeben werden und durch Messung der Intensität der Hydroxylschwingung vor und nach der Zugabe des Standarts, ist es möglich, die Menge von Kaolinit in der Testprobe zu errechnen. Die Wahl des zugegebenen Standarts, wird mit Hilfe der charakteristischen Eigenschaften der Hydroxylstreckschwingungen getroffen.

Résumé

Résumé

Une méthode à l'infra-rouge a été développée pour l'estimation de kaolinite dans des sédiments. Des bandes d'allongement hydroxyles de kaolinite dans des sédiments peuvent être enregistrées par l'emploi d'une technique différentielle qui élimine toute superposition due à d'autres constituents minéraux présents. Par l'addition de quantités connues d’étalon approprié à l’échantillon, et en mesurant les intensités des bandes OH avant et après l'addition, il est possible de calculer la proportion de kaolinite dans l’échantillon expérimental. Le choix de l’étalon ajouté est dicté par les phénomènes caractéristiques des bandes d'allongement hydroxyles.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Brindley, G. W. and Kurtossy, S. S. (1961) Quantitative determination of kaolinite by X-ray diffraction: Am. Mineral. 46, 12051215.Google Scholar
Grim, R. E. (1968) Clay Mineralogy, 2nd ed., 596 pp.: McGraw-Hill, New York.Google Scholar
Miller, J. G. and Oulton, T. D. (1970) Prototropy in kaolinite during percussive grinding: Clays & Clay Minerals 18, 313323.CrossRefGoogle Scholar
Murray, P. and White, J. (1949a) Kinetics of thermal dehydration of clays: Trans. Br. Ceram. Soc. 54, 187206.Google Scholar
Parker, T. W. (1969) A classification of kaolinites by infrared spectroscopy: Clay Miner. 8, 135141.CrossRefGoogle Scholar
Rousseaux, J-M., Gomez, L. C., Nathan, Y. and Rouxhet, P. G. (1972) Correlation between the hydroxyl stretching bands and the chemical composition of trioctahedral micas: Int. Clay Conf. Madrid, 1, 8996.Google Scholar
Rousseaux, J-M. and Warkentin, B. P. (1976) Surface properties and forces holding water in allophane soils: Proc. Soil Sci. Soc. Am. 40, 446451.CrossRefGoogle Scholar
Rouxhet, P. G. (1969) The Beer-Lambert law in the infrared derivation from wave mechanics and application to solids: Opt. Pura Appl. 2, 7581.Google Scholar
Rouxhet, P. G. (1970) Hydroxyl stretching bands in micas. A quantitative interpretation: Clay Miner. 8, 375387.CrossRefGoogle Scholar
Rouxhet, P. G., Samudacheata, Ngo Jacobs, H. and Anton, O. (1976) Attribution of the OH stretching bands of kaolinite: Clay Miner., accepted for publication.CrossRefGoogle Scholar
van der Marel, H. W. (1960) Quantitative analysis of kaolinite: Silic. Ind. 25, 23–31, 7686.Google Scholar
van der Marel, H. W. and Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures, 5. Quantitative Analysis: Elsevier, Amsterdam.Google Scholar
Warkentin, B. P. (1972) Kaolinite in fumarole soils on Nevis, West Indies: Trop. Agric. Trinidad 49, 179181.Google Scholar