Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:25:17.579Z Has data issue: false hasContentIssue false

Quantification Curves for XRD Analysis of Mixed-Layer 14Å/10Å Clay Minerals

Published online by Cambridge University Press:  28 February 2024

C. H. Pons
Affiliation:
Université d'Orléans, CRMD Unité Mixte CNRS-Université, U.F.R. Faculté des Sciences, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
C. de la Calle
Affiliation:
Instituto de Ciencia de Materiales, Sede D, C.S.I.C., c) Serrano 113, 28006 Madrid, Spain
J. L. Martin de Vidales
Affiliation:
Departamento de Quimica Agricola, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using theoretical profiles of diffracted X-ray intensity for interstratification between layers having d-spacings around 14.3 Å and 10.1 Å, a series of diagrams was derived from which the proportion of 14.3 Å layers (W14) and the probability of passing from a 14.3 Å layer to a 10.1 Å layer (P14/10) can be derived. W14 can be derived independently of P14/10 using the angular distance between reflections situated at 18.2° and 25.4° 2θ (CuKα). Once W14 is determined, P14/10 may be obtained using the angular width of the diffuse reflections between 27° and 34° 2θ. In this case, two different diagrams are proposed for P14/10 determination because experimental X-ray patterns show either one or two diffuse reflections. Comparison of five experimental patterns with theoretical patterns calculated using W14 and P14/10 obtained using these diagrams indicates that the method can be useful for determining W14 and P14/10 in unknown samples. Moreover, the method described is independent of the Lorentz polarization factor and the layer type. The d-spacings associated with the two kinds of layers, however, should be similar (± 1%) to those for which the determinative diagrams were calculated.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Bailey, S. W., 1980. Structures of layer silicates. In Crystal Structures of Clay Minerals and Their X-ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, 1123.Google Scholar
Bailey, S. W., 1982. Nomenclature for regular interstratification. Clay Miner. 17: 243248.CrossRefGoogle Scholar
Boettcher, A. L., 1966. Vermiculite, hydrobiotite and biotite in the Rainy Creek igneous complex near Libby, Montana. Clay Miner. 6: 283296.CrossRefGoogle Scholar
Brindley, G. W., and Gillery, F. M. 1956 . X-ray identification of chlorite species. Amer. Mineral. 41: 169181.Google Scholar
Brindley, G. W., Zalba, P. E., and Bethke, C. M. 1983 . Hydrobiotite, a regular 1: 1 interstratification of biotite and vermiculite layers. Amer. Mineral. 68: 420425.Google Scholar
de la Calle, C., and Suquet, H. . Vermiculite. In Reviews in Mineralogy, Vol 19. Hydrous Phyllosilicates. Bailey, S. W., 1988 ed. New York: Mineralogical Society of America, 455496.CrossRefGoogle Scholar
Guinier, A., 1964. Theorie et technique de la radiocristallographie. Chap. 13. Paris: Dunod, 490663.Google Scholar
Jackson, M. L., Hseung, Y., Corey, R. B., Evans, E. J., and Vanden Heuvel, R. C. 1952 . Weathering sequence of clay size minerals in soils and sediments. II Chemical weathering of layer silicate. Soil Sci. Soc. Amer. Proc. 16: 36.CrossRefGoogle Scholar
Kakinoki, J., and Komura, Y. 1952 . Intensity of X-ray diffraction by one-dimensionally disordered crystals. Jour. Phys. Soc. Japan 7: 3035.CrossRefGoogle Scholar
MacEwan, D. M. C., 1956. Fourier transform methods for studying scattering from lamellar systems. I. A direct method for analysing interstratified mixtures. Koloidzeitschr. 149: 96108.Google Scholar
MacEwan, D. M. C., 1958. Fourier transform methods for studying scattering from lamellar systems. II. The calculation of X-ray diffraction effects for various types of interstratification. Koloidzeitschr. 156: 6167.Google Scholar
MacEwan, D. M. C., Amil, A. Ruiz, and Brown, G. . Interstratified clay minerals. In The X-Ray Identification and Crystal Structures of Clay Minerals. Brown, G., 1961 ed. London: Mineralogical Society, 393445.Google Scholar
MacEwan, D. M. C., and Amil, A. Ruiz. Interstratified clay minerals. In Soil Components. I. Inorganic Components. Gieseking, G. E., 1975 ed. New York: Springer-Verlag, 265334.CrossRefGoogle Scholar
Martin de Vidales, J. L., Vila, E., Amil, A. Ruiz, de la Calle, C., and Pons, C. H. 1990 . Interstratification in Malawi vermiculite: Effect of Bi-ionic K-Mg solutions. Clays & Clay Miner. 38: 513521.CrossRefGoogle Scholar
Martin de Vidales, J. L., de la Calle, C., and Pons, C. H. 1991 . Interstratification K-Mg dans les vermiculites. Comportement particulier de la vermiculite de Malawi. Clay Miner. 26: 571576.CrossRefGoogle Scholar
Mering, J., 1949. Interférence des rayons X dans les systèmes a interstratification desordonnée. Acta Crystallog. 2: 371377.CrossRefGoogle Scholar
Newman, A. C. D., and Brown, G. . The chemical constitution of clays. In Chemistry of Clays and Clay Minerals. Newman, A. C. D., 1987 ed. London: Mineralogical Society, 1128.Google Scholar
Plançon, A., 1981. Diffraction by layer structures containing different kinds of layers and stacking faults. J. Applied Crystallogr. 14: 300304.CrossRefGoogle Scholar
Pons, C. H., Rousseaux, F., and Tchoubar, D. 1981 . Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l'étude du gonflement des smectites. I. Etude du système eau montmorillonite-Na en fonction de la température. Clay Miner. 16: 2342.CrossRefGoogle Scholar
Pons, C. H., Pozzuoli, A., Rausell-Colom, J. A., and de la Calle, C. 1989 . Mécanisme de passage de l‘état hydraté à une couche à l‘état zéro couche d'une vermiculite-Li de Santa Olalla. Clay Miner. 24: 479494.CrossRefGoogle Scholar
Reynolds, R. C., 1980. Interstratified clay minerals. In Crystal Structures of Clay Minerals and Their X-Ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, 249303.CrossRefGoogle Scholar
Reynolds, R. C., 1988. Mixed layer chlorite minerals. In Reviews in Mineralogy, Vol 19. Hydrous Phyllosilicates. Bailey, S. W., ed. New York: Mineralogical Society of America, 601629.CrossRefGoogle Scholar
Rhoades, J. D., and Coleman, N. T. 1967 . Interstratification in vermiculite and biotite produced by potassium sorption. I. Evaluation by simple X-ray diffraction pattern inspection. Soil Sci. Soc. Amer. Proc. 31: 366372.CrossRefGoogle Scholar
Sato, M., 1965. Structure of interstratified (mixed-layer) minerals. Nature 208: 7080.CrossRefGoogle Scholar
Sawhney, B. L., 1969. Regularity of interstratification as affected by charge density in layer silicates. Soil Sci. Soc. Amer. Proc. 33: 4246.CrossRefGoogle Scholar
Sawhney, B. L., and Reynolds, R. C. 1985 . Interstratified clays as fundamental particles: A discussion. Clays & Clay Miner. 33: 559.CrossRefGoogle Scholar
Shirozu, H., and Bailey, S. W. 1966 . Crystal structure of a two-layer Mg-vermiculite. Amer. Mineral. 51: 11241143.Google Scholar
Srodon, J., 1980. Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays & Clay Miner. 28: 401411.CrossRefGoogle Scholar
Stephen, I., 1952. A study of rock weathering with reference to the Malvern Hills. Part I. Weathering of biotite and granite. J. Soil Sci. 87: 2033.CrossRefGoogle Scholar
Tomita, K., and Takahashi, H. 1985 . Curves for the quantification of mica/smectite and chlorite/smectite interstratifications by X-ray powder diffraction. Clays & Clay Miner. 33: 379390.CrossRefGoogle Scholar
Tomita, K., and Takahashi, H. 1986 . Quantification curves for the X-ray diffraction analysis of mixed-layer kaolinite/smectite. Clays & Clay Miner. 34: 323329.CrossRefGoogle Scholar
Tomita, K., Takahashi, H., and Watanabe, T. 1988 . Quantification curves for mica/smectite interstratifications by X-ray powder diffraction. Clays & Clay Miner. 36: 258262.CrossRefGoogle Scholar
Walker, G. F., 1950. Trioctahedral minerals in the soil clays of northeast Scotland. Mineral. Mag. 29: 7284.Google Scholar
Watanabe, T., 1988. The structural model of illite/smectite interstratified mineral and the diagram for its identification. Applied Clay Science 7: 97114.Google Scholar