Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T22:13:33.589Z Has data issue: false hasContentIssue false

Qualitative and Quantitative Study of Stacking Faults in a Hydrazine Treated Kaolinite—Relationship with the Infrared Spectra

Published online by Cambridge University Press:  01 July 2024

J. Barrios
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans et Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 45045 Orléans Cedex, France On leave of absence from Laboratório Quimica Inorganica “Elhuyar”, Inst. Celestino Mutis C.S.I.C., Serrano, 117, Madrid, Spain.
A. Plançon
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans et Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 45045 Orléans Cedex, France
M. I. Cruz
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans et Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 45045 Orléans Cedex, France
C. Tchoubar
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans et Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 45045 Orléans Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Artificial stacking faults can be created within a well-crystallized kaolinite by intercalating and removing hydrazine. X-ray powder patterns with electron microscopy show that the created defects are ±b/3 translations with a proportion 0.30. The infrared spectrum of the treated kaolinite is not modified with respect to the starting one. On the other hand, a natural kaolinite containing defects by displacement of Al vacancies in a similar proportion shows an infrared spectrum significantly different from that of a well-crystallized kaolinite. The modification of the infrared spectra of natural disordered kaolinites is then related to the presence of defects by change of Al vacancy positions

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

References

Brindley, G. W. and Robinson, K. (1946) Randomness in the structures of kaolinitic clay minerals: Trans. Faraday Soc. 46, 4962.Google Scholar
Cruz, M. I., Jacobs, H. and Fripiat, J. J. (1972) The nature of the interlayer bonding in kaolin minerals: Proc. Int. Clay Conf., Madrid, pp. 3546.Google Scholar
de Kimpe, C. and Colmet Daage, F. (1966) Caractérisation des minéraux kaolinitiques par diverses techniques: Bull. Gr. Fr. Arg. 3, 5966.Google Scholar
Farmer, V. C. (1964) Infrared absorption of hydroxyls groups in kaolinite: Science 145, 11891190.CrossRefGoogle ScholarPubMed
Farmer, V. C. (1974) Infrared Spectra of Minerals, p. 341: Mineralogical Society, London.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D. (1964) The infrared spectra of layer silicates: Spectrochim. Acta 20, 11491173.CrossRefGoogle Scholar
Fleurence, A. and Nicolas, J. (1964) Observation sur la notion d'ordre et de désordre de certains minéraux du groupe de la kaolinite: Bull. Gr. Fr. Arg. 14, 149162.Google Scholar
Giese, R. F. and Datta, P. (1973) Hydroxyl orientation in kaolinite, dickite and nacrite: Am. Miner. 58, 471479.Google Scholar
Jacobs, H. (1971) Etude des hydroxyles de la kaolinite par spectroscopie infrarouge: Thèse, Université Catholique de Louvain.Google Scholar
Jacobs, H. and Stercks, M. (1970) Contribution à l'étude de l'intercalation du dimethylsulfoxyde dans le réseau de la kaolinite: Proc. Reunion Hispano-Belge Miner. Arg., Madrid.Google Scholar
Ledoux, R. L. and White, J. L. (1966) Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide and urea: J. Colloid Interface Sci. 21, 127152.CrossRefGoogle Scholar
Mata-Arjona, A., Ruiz-Amil, A. and Inara-Martin, E. (1970) Cinetica del proceso de sorcion del dimetilsulfoxido en caolinita: estudio por difraccion de rayos X: Proc. Reunion Hispano-Belge Miner. Arg., Madrid.Google Scholar
Murray, H. H. and Lyons, S. C. (1956) Correlation of paper-coating quality with degree of crystal perfection of kaolinite: Clays and Clay Minerals 4, 3140.Google Scholar
Newnham, R. E. (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals: Miner. Mag. 32, 683704.Google Scholar
Noel, C. (1972) Interprétation quantitative des bandes de valence OH des phyllosilicates et des amphiboles: Thèse, Université de Louvain.Google Scholar
Parker, T. W. (1969) Classification of kaolinites by infrared spectroscopy, Clay Miner. 8, 1935.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C. (1975) Etude des fautes d'empilement dans les kaolinites partiellement désordonnées—I. Modèle ne comportant que des fautes par translation: J. Appl. Cryst. 8, 582588.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C. (1976) Etude des fautes d'empilement dans les kaolinites partiellement désordonnées—II. Modèle comportant des fautes par rotation: J. Appl. Cryst. 9, 279285.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C. (1977a) Determination of structural defects in phyllosilicates by X-ray powder diffraction—I. Principle of calculation of the diffraction phenomenon: Clays and Clay Minerals 25, 430435.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C. (1977b) Determination of structural defects in phyllosilicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinites: Clays and Clay Minerals 25, 436450.CrossRefGoogle Scholar
Samudacheata, N. (1975) Etude des hydroxyles de la kaolinite par spectroscopie infrarouge: Thèse, Université de Louvain.Google Scholar
van der Marel, H. W. and Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures: Elsevier, Amsterdam.Google Scholar
van der Marel, H. W. and Krohner, P. (1969) OH stretching vibrations in kaolinite and related minerals: Contrib. Min. Petr. 22, 7382.CrossRefGoogle Scholar
Weiss, A., Thielepape, W., Göring, G., Ritter, W. and Schäfer, H. (1963) Kaolinit-Einlagerungs-Veirbindungen: Proc. Int. Clay Conf., Stockholm, Vol. 1, pp. 287305.Google Scholar
White, J. L., Laycock, A. and Cruz, M. I. (1970) Infrared studies of proton delocalization in kaolinite: Bull. Gr. Fr. Arg. 22, 157165.Google Scholar
Wieckowski, J. and Wiewiora, A. (1976) New approach to the problem of the interlayer bonding in kaolinite: Clays and Clay Minerals 24, 219223.CrossRefGoogle Scholar
Wiewiora, A. and Brindley, G. W. (1969) Potassium acetate intercalation in kaolinite and its removal; effect of material characteristics: Proc. Int. Clay. Conf., Tokyo, Vol. 1, pp. 723733.Google Scholar
Zvyagin, B. B. (1960) Electron diffraction determination of the structure of kaolinite: Dokl. Akad. Nauk S.S.S.R. 130(5).Google Scholar