Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T22:39:16.081Z Has data issue: false hasContentIssue false

Prototropy in Kaolinite during Percussive Grinding

Published online by Cambridge University Press:  01 July 2024

John G. Miller
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia 4, Pa. 19104, U.S.A.
T. Dixon Oulton
Affiliation:
Engelhard Minerals & Chemicals Corp., Menlo Park, Edison, New Jersey 08817, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When kaolinite undergoes percussive grinding, pronounced changes take place in its i.r. absorption spectrum even in the earliest stages of the grinding when the lattice is not yet destroyed. In this report, attention is directed to the change in the stretching bands of the hydroxyl ions. A remarkably rapid effect on the band of the intralayer hydroxyl ions has been observed and is attributed to a permanent removal of the protons from these ions. Auxiliary measurements of X-ray diffraction, thermal water loss, and DTA were used to corroborate the spectroscopic evidence for this ready prototropy.

Résumé

Résumé

Quand la kaolinite subit un broyage par percussion, des changements prononcés se produisent dans son spectre d’absorption de l’infra-rouge, même dès les premiers stades du broyage, quand l’édifice cristallin n’est pas encore détruit. Dans cet exposé l’attention est orientée au changement des ions hydroxyles dans les bandes d’allongement. Un effet extrêmement rapide sur la bande des ions hydroxyles entre les couches intermédiaires a été observé et est attribué à un enlèvement permanent des protons de ces ions. Les mesures auxiliaires de la diffraction des ryons X, de la perte d’eau thermique et des analyses thermiques différentielles ont été utilisées afin de corroborer l’évidence spectroscopique pour cette prototropie.

Kurzreferat

Kurzreferat

Wenn Kaolinit in der Schlagmühle zerkleinert wird, treten deutliche Veründerungen im ultraroten Absorptionsspektrum auf, und zwar in den Frühstadien der Zerkleinerung, ehe noch das Kristallgitter zerstört worden ist. Im gegenwärtigen Bericht wird auf die Veränderung in den sich dehnenden Banden der Hydroxylionen hingewiesen. Es wurde ein bemerkenswert prompter Effekt auf die Bande der Zwischenschicht-Hydroxylionen beobachtet, der einer bleibenden Entfernung der Protonen von diesen lonen zugeschrieben wird. Zur Bekraftigung der spektroskopischen Bejundung dieser schnellen Prototropie wurden Hilfsmessungen der Röntgenbeugung, des thermischen Wasserverlustes und der differentiellen thermischen Analyse (DTA) durchgeführt.

Резюме

Резюме

Если каолинит подвергается ударному размалыванию, то в его инфракрасных спектрах поглощения даже на ранних стадиях, когда решетка еще не разрушена, обнаруживаются заметные изменения. Наблюдалось весьма быстрое изменение полос межслоевых гидроксилов, которое, очевидно, обусловлено непрерывным удалением из них протонов. Для подтверждения этого процесса переноса протонов в структуре каолинита использованы рентгенографическое исследование, определение потери воды при нагревании и диференциально-термический анализ.

Type
Research Article
Copyright
Copyright © 1970 The Clay Minerals Society

References

Bailey, S. W. (1963) Polymorphism of the kaolin minerals: Am. Mineralogist 48, 11961209.Google Scholar
Bates, T. F. and Hinckley, D. N. (1959) Mineralogy and petrology of the kaolin clays of the Piedmont and Coastal plane regions of Southeastern United States: NSF Research Grant, G 3735, Annual Progress Report, June 1, 1958-July 1, 1959. The Pennsylvania State University, University Park, Pennsylvania.Google Scholar
Brindley, G. W. and Robinson, K. (1946) The structure of kaolinite: Mineral Mag. 27, 242253.Google Scholar
Brindley, G. W. and Kurtossi, S. S. (1961) Quantitative determination of kaolinite by X-ray diffraction: Am. Mineralogist 46, 12051215.Google Scholar
De Keyser, W. L., Wollast, R. and De Laet, L. (1963) Contribution to the study of OH groups in kaolin minerals: Intern. Clay Conf. 2, 7586.Google Scholar
De Keyser, W. L. (1965) Applications de la spectrométrie infra-rouge à l’étude de matériaux céramiques: Bull. Soc. Fr. Céram.[68], D553, 4350.Google Scholar
Farmer, V. C. (1964) Infrared absorption of hydroxyl groups in kaolinite: Science 145, 11891190.CrossRefGoogle ScholarPubMed
Farmer, V. C. and Russell, J. D. (1964) The infrared spectra of layer silicates: Spectrochim. Acta 20, 11491173.CrossRefGoogle Scholar
Farmer, V. C. and (in part) Russell, J. D. (1966) Effects of particle size and structure on the vibrational frequencies of layer silicates: Spectrochim. Acta 22, 389398.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D. (1967) Infrared absorption spectrometry in clay studies: Clays and Clay Minerals 27, 121142.CrossRefGoogle Scholar
Fripiat, J. J. and Toussaint, F. (1963) Dehydroxylation of kaolinite. II. Conductometric measurements and infrared spectroscopy: J. Phys. Chem. 67, 3036.CrossRefGoogle Scholar
Grim, R. E. (1968) Clay Mineralogy. McGraw-Hill, New York, 2nd. ed., 596 pp.Google Scholar
Kelley, W. P., Jenny, H. and Brown, S. M. (1936) Hydration of minerals and soil colloids in relation to crystal structure: Soil Sci. 41, 367382.CrossRefGoogle Scholar
Laws, W. D. and Page, J. B. (1946) Changes produced in kaolinite by grinding: Soil Sci. 62, 319336.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L. (1964) Infrared study of the OH groups in expanded kaolinite: Science 143, 244246.CrossRefGoogle ScholarPubMed
Ledoux, R. L. and White, J. L. (1964) Infrared study of selective deuteration of kaolinite and halloysite at room temperature: Science 145, 4749.CrossRefGoogle ScholarPubMed
Ledoux, R. L. and White, J. L. (1966) Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea: J. Colloid Interface Sci. 21, 127152.CrossRefGoogle Scholar
Legrand, C. and Nicolas, J. (1959) Contributions de la diffraction des rayons X et de la microscopie electronique à l’étude des kaolins broyés: Bull. Soc. Fr. Céram. 44, 6169.Google Scholar
Miller, J. G. (1961) An infrared spectroscopic study of the isothermal dehydroxylation of kaolinite at 470°: J. Phys. Chem. 65, 800804.CrossRefGoogle Scholar
Perkins, A. T., Dragsdorf, R. D., Lippincott, E. R., Selby, J. and Fateley, W. G. (1955) Products of clay mineral decomposition as related to phosphate fixation: Soil Sci. 80, 109120.CrossRefGoogle Scholar
Radoslovich, E. W. (1963) The cell dimensions and symmetry of layer-lattice silicates. IV. Interatomic forces: Am. Mineralogist 48, 7699.Google Scholar
Smothers, W. J. and Chiang, Y. (1966) Handbook of Differential Thermal Analysis, 271–219. Chemical Pub. Co. Inc., N.Y., 633 pp.Google Scholar
Saksena, B. D. (1961) Infra-red absorption studies of some silicate structures: Trans. Faraday Soc. 57, 242255.CrossRefGoogle Scholar
Stubican, V. and Roy, R. (1961) A new approach to assignment of infrared absorption bands in layer-lattice silicates: Z. Krist. 115, 200214.CrossRefGoogle Scholar
Takahashi, H. (1959) Effects of dry grinding on kaolin minerals. I. Kaolinite: Bult. Chem. Soc. Japan 32, 235245.CrossRefGoogle Scholar
Toussaint, F., Fripiat, J. J. and Gastuche, M. C. (1963) Dehydroxylation of kaolinite. I. Kinetics: J. Phys. Chem. 67, 2630.CrossRefGoogle Scholar
Van der Marel, H. W. (1960) Quantitative analysis of kaolinite: Silicates Industrials 25, 2331, and 76-86.Google Scholar
White, J. L. (1968) Proton migration in kaolinite: 9th Int. Congress Soil Sci. Trans. 1, 701707.Google Scholar