Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T20:34:07.988Z Has data issue: false hasContentIssue false

Preparation and Characterization of Fe-, Co-, and Ni-Containing Mg-Al-Layered Double Hydroxides

Published online by Cambridge University Press:  01 January 2024

Hilde Curtius*
Affiliation:
Institute for Energy and Climate Research (Nuclear Waste Management and Reactor Safety, IEK-6), Forschungszentrum Jülich, 52425 Jülich, Germany
Gabriel Kaiser
Affiliation:
Institute for Energy and Climate Research (Nuclear Waste Management and Reactor Safety, IEK-6), Forschungszentrum Jülich, 52425 Jülich, Germany
Konstantin Rozov
Affiliation:
Institute for Energy and Climate Research (Nuclear Waste Management and Reactor Safety, IEK-6), Forschungszentrum Jülich, 52425 Jülich, Germany
Andreas Neumann
Affiliation:
Institute for Energy and Climate Research (Nuclear Waste Management and Reactor Safety, IEK-6), Forschungszentrum Jülich, 52425 Jülich, Germany
Kathy Dardenne
Affiliation:
Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Dirk Bosbach
Affiliation:
Institute for Energy and Climate Research (Nuclear Waste Management and Reactor Safety, IEK-6), Forschungszentrum Jülich, 52425 Jülich, Germany
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Syntheses of Fe-, Co-, and Ni-containing Mg-Al-layered double hydroxides (LDHs) are described here because Fe, Co, and Ni represent the major constituents in steel containers used for storing spent nuclear fuel. Much evidence exists for the formation of LDHs during the corrosion of such containers under repository-relevant conditions. Because of their anion-exchange properties, LDHs can be considered as materials with the potential to retain and immobilize anionic radionuclides. Evaluation of the thermodynamic properties of LDHs is essential for reliable prediction of their behavior (solubility, anion exchange properties) in geochemical environments. The impact on the thermodynamic properties of the isostructural incorporation of divalent cations into the LDH was the main focus of the present study.

Mg-Al-Cl-LDH and the Fe-, Co-, and Ni-doped LDHs were synthesized by the co-precipitation method and then characterized (using powder X-ray diffraction (PXRD), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy energy-dispersive X-ray spectroscopy (SEM-EDX), and thermogravimetric analyses (TGA)).

The PXRD and EXAFS analyses indicated that all synthesized samples were pure LDHs where Co, Ni, and Fe were incorporated isostructurally. The EXAFS and XANES results demonstrated that Ni and Co were incorporated as divalent cations and Fe as a trivalent cation. Thermodynamic calculations were performed assuming an equilibrium state between aqueous solutions and corresponding precipitates after synthesis. The first estimates of the molar Gibbs free energies for Fe-, Co-, and Ni-containing LDHs at 70ºC were provided. The calculated Gibbs free energy of the pure Mg-Al-LDH (-3629 kJ/mol) was slightly less than those for Fe-, Co-, and Ni-containing compositions (-3612±50, -3604±50, -3593±50kJ/mol).

Type
Article
Copyright
Copyright © Clay Minerals Society 2013

References

NAGRA technical report 02–05, 2002 Project Opalinus Clay. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (entsorgungsnachweis) Wettingen, Germany NAGRA.Google Scholar
Abdelouas, A. Crovisier, J.L. Lutze, W. Fritz, B. Mosser, A. and Muller, R., 1994 Formation of hydrotalcite-like compounds during R7T7 nuclear waste glass and basaltic glass alteration Clays and Clay Minerals 42 526533.CrossRefGoogle Scholar
Allada, R.K. Navrotsky, A. Berbeco, H.T. and Casey, W.H., 2002 Thermochemistry and aqueous solubilities of hydrotalcite-like solids Science 296 721723.CrossRefGoogle ScholarPubMed
Allada, R.K. Pless, J.D. Nenoff, T.M. and Navrotsky, A., 2005 Thermochemistry of hydrotalcite-like phases intercalated with CO32-, NO3-, Cl-, I-, and ReO4- Chemistry of Materials 17 24552459.CrossRefGoogle Scholar
Allmann, R.J. and Jepsen, H.P., 1969 Die Struktur des Hydrotalkits Neues Jahrbuch für Mineralogie Monatshefte 544551.Google Scholar
Arakcheeva, A.V. Pushcharovskii, D.Y. Rastsvetaeva, R.K. Atencio, D. and Lubman, G.U., 1996 Crystal structure and comparative crystal chemistry of Al2Mg4(OH)12(CO3)3·(H2O), a new mineral from the hydrotalcite-manasseite group KRISAJ 41 10241034.Google Scholar
Bellotto, M. Rebours, B. Clause, O. Lynch, J. Bazin, D. and Elkaïm, E., 1996 A reexamination of hydrotalcite crystal chemistry The Journal of Physical Chemistry 100 85278534.CrossRefGoogle Scholar
Bergmann, J. Friedel, P. and Kleeberg, R., 1998 BGMN—a new fundamental parameters-based rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations CPD Newsletter 58.Google Scholar
Bookin, A.S. and Drits, V.A., 1993 Polytype diversity of the hydrotalcite-like minerals—I. Possible polytypes and their diffraction features Clays and Clay Minerals 41 551557.CrossRefGoogle Scholar
Bragg, W.L., 1913 The diffraction of short electromagnetic waves by a crystal Proceedings of the Cambridge Philosophical Society 17 4357.Google Scholar
Britto, S. Thomas, GS V Kamath, P. and Kannan, S., 2008 Polymorphism and structural disorder in the carbonate containing layered double hydroxide of Li with Al Journal of Physical Chemistry C 112 25 95109515.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D., 1985 Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database Acta Crystallographica Section B-Structural Science 41 244247.CrossRefGoogle Scholar
Cavani, F. Trifiro, F. and Vaccari, A., 1991 Hydrotalcite-type anionic clays: Preparation, properties and applications Catalysis Today 11 173301.CrossRefGoogle Scholar
Cui, D. and Spahiu, K., 2002 The reduction of U(VI) on corroded iron under anoxic conditions Radiochimica Acta 90 623628.CrossRefGoogle Scholar
Curtius, H. Kaiser, G. Paparigas, Z. Hansen, B. Neumann, A. Klinkenberg, M. Müller, E. Brücher, H. and Bosbach, D., 2010 Wechselwirkung mobilisierter Radionuklide mit sekundären Phasen in endlagerrelevanten Formationswässern Berichte des Forschungszentrums Jülich-4333 09442952.Google Scholar
Curtius, H. and Kattilparampil, Z., 2005 Sorption of iodine on Mg-Al-layered double hydroxide Clay Minerals 40 455461.CrossRefGoogle Scholar
Curtius, H. Ufer, K. and Dardenne, K., 2009 Preparation and characterization of Zr(IV)-containing Mg-Al-Cl layered double hydroxide Radiochimica Acta 97 423428.CrossRefGoogle Scholar
Davies, C.W., 1962 Ion Association London Butterworths.Google Scholar
Faour, A. Mousty, C. Prevot, V. Devouard, B. D. Roy, A. Bordet, P. Elkaim, E. and Taviot-Gueho, C., 2012 Correlation among structure, microstructure, and electrochemical properties of NiAl-CO3 layered double hydroxide thin films Journal of Physical Chemistry 116 1564615659.Google Scholar
Finck, N. Dardenne, K. Bosbach, D. and Geckeis, H., 2012 Selenide retention by mackinawite Environmental Science & Technology 46 1000410011.CrossRefGoogle ScholarPubMed
Hummel, W. Berner, U. Curti, E. Pearson, F.J. and Thoenen, T., 2002 Nagra/PSI chemical thermodynamic data base 01/01 Radiochimica Acta 90 805813.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E., 1974 X-ray Diffraction Procedures New York Wiley-Interscience.Google Scholar
Kulik, D.A. Wagner, T. Dmytrieva, S.V. Kosakowski, G. Hingerl, E.F. Chudnenko, K.V. and Berner, U., 2013 GEM-Selektor geochemical modeling package, revised algorithm and GEMS3K numerical kernel for coupled simulation codes Computational Geosciences 17 124.Google Scholar
Mazeina, L. Curtius, H. Fachinger, J. and Odoj, R., 2003 Characterisation of secondary products of uranium-aluminium material test reactor fuel element corrosion in repository-relevant brine Journal of Nuclear Materials 323 17.CrossRefGoogle Scholar
Miyata, S., 1975 The synthesis of hydrotalcite-like compounds and their structures and physic-chemical properties Clays and Clay Minerals 31 369375.CrossRefGoogle Scholar
Miyata, S., 1980 Physicochemical properties of synthetic hydrotalcites in relation to composition Clays and Clay Minerals 28 5056.CrossRefGoogle Scholar
Miyata, S. and Kumura, T., 1973 Synthesis of new hydrotalcite-like compounds and their physicochemical properties Chemistry Letters 843848.CrossRefGoogle Scholar
Newville, M., 2001 IFEFFIT: Interactive XAFS analysis and FEFF fitting Journal of Synchrotron Radiation 8 322324.CrossRefGoogle ScholarPubMed
Prasanna, S.V. Kamath, P.V. and Shivakumara, C., 2007 Synthesis and characterization of layered double hydroxides (LDHs) with intercalated chromate ions Materials Research Bulletin 42 10281039.CrossRefGoogle Scholar
Renaudin, G. Kubel, F. Rivera, J.P. and Francois, M., 1999 Structural phase transition and high temperature phase structure of Friedels salt, 3CaO·Al¡2O3·CaCl2·10H2O Cement and Concrete Research 29 19371942.CrossRefGoogle Scholar
Radha, A.V. Kamath, P.V. and Shivakumara, C., 2007 Order and disorder among the layered double hydroxides: combined Rietveld and DIFFaX approach Acta Crystallographica Section B: Structural Science 63 243250.CrossRefGoogle ScholarPubMed
Rives, V., 2001 Layered double hydroxides: Present and future New York Nova Science Publishers.Google Scholar
Rozov, K. Berner, U. Taviot-Gueho, C. Leroux, F. Renaudin, G. Kulik, D. and Diamond, L.W., 2010 Synthesis and characterization of the LDH hydrotalcite-pyroaurite solid-solution series Cement and Concrete Research 40 12481254.CrossRefGoogle Scholar
Rozov, K. Berner, U. Kulik, D. and Diamond, L.W., 2011 Solubility and thermodynamic properties of carbonate-bearing hydrotalcite-pyroaurite solid solutions with 3:1 Mg/(Al+Fe) mole ratio Clays and Clay Minerals 59 215232.CrossRefGoogle Scholar
Shannon, R.D., 1976 Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica Section A 32 751767.CrossRefGoogle Scholar
Shock, E.L. Sassani, D.C. Willis, M. and Sverjensky, D.A., 1997 Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes Geochimica et Cosmochimica Acta 61 907950.CrossRefGoogle ScholarPubMed
Taylor, R.M., 1984 The rapid formation of crystalline double hydroxy salts and other compounds by controlled hydrolysis Clay Minerals 19 591603.CrossRefGoogle Scholar
Thomas, G.S. Rajamathi, M. and Kamath, P.V., 2004 Diffax simulations of polytypism and disorder in hydrotalcite Clays and Clay Minerals 52 693699.CrossRefGoogle Scholar
Treacy, M.M.J. Newsam, J.M. and Deem, M.W., 1991 A general recursion method for calculating diffracted intensities from crystals containing planar faults Proceedings of the Royal Society, A 433 499520.Google Scholar
Trolard, F. Bourrie, G. Abdelmoula, M. Refait, P. and Feder, F., 2007 Fougerite, a new mineral of the pyroaurite-iowaite group: Description and crystal structure Clays and Clay Minerals 55 323334.CrossRefGoogle Scholar
Ufer, K. Kleeberg, R. Bergmann, J. Curtius, H. and Dohrmann, R., 2008 Refining real structure parameters of disordered layer structures within the Rietveld method Zeitschrift für Kristallographie Supplements 2008 151158.CrossRefGoogle Scholar
Unnikrishnan, R. and Narayanan, S., 1999 Metal containing layered double hydroxides as efficient catalyst precursors for the selective conversion of acetone Journal of Molecular Catalysis A: Chemical 144 173179.CrossRefGoogle Scholar
Weiss, A. and Toth, E., 1996 Untersuchungen zur Synthese, Quellungseigenschaften und Anionenaustausch von kristallchemisch modifizierten Doppelhydroxiden vom Hydrotalkit-Typ Jahrestagung der DTTG-Freiberg 267276.Google Scholar
Wilke, M. Farges, F. Petit, P.E. Brown, G.E. and Martin, F., 2001 Oxidation state and coordination of Fe in minerals: An FeK-XANES spectroscopic study American Mineralogist 86 714730.CrossRefGoogle Scholar