Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T06:07:16.076Z Has data issue: false hasContentIssue false

Preparation and Characterization of Bidimensional Zeolitic Structures Obtained from Synthetic Beidellite and Hydroxy-Aluminum Solutions

Published online by Cambridge University Press:  02 April 2024

A. Schutz
Affiliation:
Groupe de Physico-Chimie Minérale et de Catalyse, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
W. E. E. Stone*
Affiliation:
Groupe de Physico-Chimie Minérale et de Catalyse, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
G. Poncelet
Affiliation:
Groupe de Physico-Chimie Minérale et de Catalyse, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
J. J. Fripiat*
Affiliation:
Groupe de Physico-Chimie Minérale et de Catalyse, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
*
1Section de Physico-Chimie Minérale (MRAC), Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium.
2University of Wisconsin-Milwaukee, Department of Chemistry, Milwaukee, Wisconsin 53201.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Beidellite was synthesized hydrothermally from a noncrystalline gel at 320°C and 130 bar pressure. The beidellitic character of the product was verified by infrared spectroscopy on the NH4+-exchanged form. Intercalation was achieved with hydroxy-aluminum solutions having different OH/Al molar ratios. The solutions were investigated by several methods, including 27Al nuclear magnetic resonance. Essentially, two Al species were detected: monomelic Al and a polymerized form containing Al in four-fold coordination. This latter species was found to be selectively fixed in the interlamellar region, which resulted in a stable spacing of 18 Å at 110°C and 16.2 Å at 700°C. The pillared beidellites had specific surface areas of > 300 m2/g, mainly due to micropores. Both Brönsted and Lewis acid sites were evidenced by infrared spectroscopy using pyridine as a probe molecule.

Résumé

Résumé

Une beidellite obtenue par synthèse hydrothermale (320°C, 130 bar) à partir d'un gel précurseur et identifiée comme telle sur base des spectres infrarouges de la forme échangée à l'ammonium, a été pontée par des solutions hydroxy-aluminiques de rapports OH/Al différents. Les solutions de pontage ont été étudiées par différentes méthodes, dont la résonance magnétique nucléaire. Deux espèces d'aluminium, l'une monomérique, l'autre polymérique contenant de l'aluminium en coordination tétraédrique coexistent dans ces solutions. On a observé que l'espèce polymérique s'adsorbe préférentiellement dans l'espace interlamellaire, conférant à l’édifice un espacement de 18 Å à 120°C et de 16,2 Å après calcination à 700°C. La surface spécifique de ces beidellites pontées est de l'ordre de 300 m2/g. La spectrométrie infrarouge de la pyridine adsorbée décèle la présence des acidités Brönsted et Lewis.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Akitt, J. W., Greenwood, N. N., Klandelwal, B. L. and Lester, G. D., 1972 27A1 nuclear magnetic resonance studies of the hydrolysis and polymerization of the hexa-aquo-alu-minum(III) cation J. Chem. Soc. Dalton Trans. 604610.CrossRefGoogle Scholar
Alma, N. C. M. Hays, G. R., Samoson, A. V. and Lippmaa, E. T., 1984 Characterization of synthetic dioctahedral clays by solid-state silicon-29 and aluminum-27 nuclear magnetic resonance spectrometry Anal. Chem. 56 729733.CrossRefGoogle Scholar
Barnhisel, R. I., Dixon, J. B. and Weed, S. B., 1977 Chlorites and hydroxy interlayered vermiculite and smectite: in Minerals in Soil Environment Soil Sci. Soc. Amer. Wisconsin Madison 331.Google Scholar
Barnhisel, R. I. and Rich, C. I., 1963 Gibbsite formation from aluminum-interlayers in montmorillonite Soil Sci. Soc. Amer. Proc. 27 632635.CrossRefGoogle Scholar
Bersillon, J. L., Hsu, P. H. and Fiessinger, F., 1980 Characterization of hydroxy-aluminum solutions Soil Sci. Soc. Amer. Proc. 44 630634.CrossRefGoogle Scholar
Bottero, J. Y., Cases, J. M., Fiessinger, F. and Poirier, J. E., 1980 Studies of hydrolyzed aluminum chloride solutions. I. Nature of aluminum species and composition of aqueous solutions J. Phys. Chem. 84 29332939.CrossRefGoogle Scholar
Brindley, G. W. and Sempels, R. E., 1977 Preparation and properties of some hydroxy-aluminum beidellites Clay Miner. 12 229237.CrossRefGoogle Scholar
Brown, G. and Newman, A. C. D., 1973 The reactions of soluble aluminum with montmorillonite J. Soil Sci. 24 339354.CrossRefGoogle Scholar
Chourabi, B. and Fripiat, J. J., 1981 Determination of tet-rahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites Clays & Clay Minerals 29 260268.CrossRefGoogle Scholar
Davitz, J. C., 1976 The acidity of 2:1 layer silicates J. Catal. 43 260263.CrossRefGoogle Scholar
Diddams, P. A., Thomas, J. M., Jones, W., Ballantine, J. A. and Purnell, J. H., 1984 Synthesis, characterization and catalytic activity of beidellite-montmorillonite layered silicates and their pillared analogues J. Chem. Soc. Chem. Comm. 13401342.CrossRefGoogle Scholar
Dubinin, M. M., 1975 Adsorption of vapours and gases by microporous solids Surface Membrane Sci. 9 170.CrossRefGoogle Scholar
Hem, J. D. and Roberson, C. E. (1967) Form and stability of hydroxide complexes in dilute solution: U.S. Geol. Surv. Water-Supply Pap. 1827–A, 55 pp.Google Scholar
Herbillon, A. and Gastuche, M. C., 1962 Etude des gels d’alumine: Cristallisation en milieu désionisé Bull. Soc. Chim. Fr. 14041412.Google Scholar
Hsu, P. H., Dixon, J. B. and Weed, S. B., 1977 Aluminum hydroxides and oxydroxides: in Minerals in Soil Environment Soil Sci. Soc. Amer. Wisconsin Madison 99140.Google Scholar
Johansson, G., Lundgren, G., Sillèn, L. G. and Söderquist, R., 1960 On the crystal structure of a basic aluminum sulfate and the corresponding selenate Acta Chem. Scand. 14 769773.CrossRefGoogle Scholar
Karlik, S. J., Tarien, E., Elgavish, G. A. and Eichhorn, G., 1983 Aluminum-27 nuclear magnetic resonance study of aluminum(III) interactions with carboxylate ligands Inorg. Chem. 22 525529.CrossRefGoogle Scholar
Lahav, N., Shani, U. and Shabtai, J., 1978 Cross-linked smectites. I. Synthesis and properties of hydroxy-aluminum-montmorillonite Clays & Clay Minerals 26 107115.CrossRefGoogle Scholar
Occelli, M. L. and Tindwa, R. M., 1983 Physicochemical properties of montmorillonite with cationic oxyaluminum pillars Clays & Clay Minerals 31 2228.CrossRefGoogle Scholar
Occelli, M. L., Parulekar, V. N. and Hightower, J. W., 1984 Sorption of normal paraffins in a pillared clay mineral Proc. 8th Int. Congress Catalysis, Berlin, Vol. 4 Frankfurt Verlag Chemie 725733.Google Scholar
Pierce, C., 1953 Computation of pore sizes from physical adsorption data J. Phys. Chem. 57 149152.CrossRefGoogle Scholar
Pinnavaia, T. J., 1983 Intercalated clay catalysts Science 220 365371.CrossRefGoogle ScholarPubMed
Pinnavaia, T. J., Tzou, M.-S. Landau, S. D. L. and Raythatha, R. H., 1984 On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum J. Mol. Catal. 27 195212.CrossRefGoogle Scholar
Plee, D., Schutz, A., Poncelet, G., Borg, F., Jacobs, P., Gatineau, L. and Fripiat, J. J., 1984 Nouvelle zeolite à structure bidimensionnelle French Pat. .Google Scholar
Plee, D., Schutz, A., Poncelet, G., Fripiat, J. J., Imelik, B., Naccache, C., Coudurier, G., Ben Taarit, J. and Vedrine, J. C., 1985 Acid properties of bidimensional zeolite Catalysis by Acids and Bases Amsterdam Elsevier 343350.CrossRefGoogle Scholar
Plee, D., Borg, F., Gatineau, L. and Fripiat, J. J., 1985 High-resolution solid-state 27A1 and 29Si nuclear magnetic resonance study of pillared clays J. Amer. Chem. Soc. 107 23622369.CrossRefGoogle Scholar
Poncelet, G., Schutz, A. and Setton, R., 1986 Pillared montmorillonite and beidellite. Acidity and catalytic properties Chemical Reactions in Organic and Inorganic Constrained Systems Dordrecht Reidel 165178.CrossRefGoogle Scholar
Rausch, W. V. and Bale, H. D., 1964 Small angle X-ray scattering from hydrolyzed aluminum nitrate solutions J. Chem. Phys. 40 33913394.CrossRefGoogle Scholar
Sanz, J. and Serratosa, J. M., 1984 Distinction of tetra-hedrally and octahedrally coordinated Al in phyllosilicate by NMR spectroscopy Clay Miner. 29 113115.CrossRefGoogle Scholar
Schutz, A., Plee, D., Borg, F., Jacobs, P., Poncelet, G., Fripiat, J. J., Schultz, L. G., Olphen, H. v. and Mumpton, F. A., 1987 Acidity and catalytic properties of pillared montmorillonite and beidellite Proc. Int. Clay Conf., Denver, 1987 Bloomington, Indiana The Clay Minerals Society 305310.Google Scholar
Sillèn, L. G., 1954 On the equilibria in systems with poly-nuclear complex formation. II. Testing simple mechanisms which give “Core + Links” complexes of composition B(BA)n Acta Chem. Scand. 8 318335.CrossRefGoogle Scholar
Stol, R. J., Van Helden, A. K. and De Bruyn, P. L., 1976 Hydrolysis-precipitation studies of aluminum(III) solutions. 2. A kinetic study and model J. Coll. Interface Sci. 57 115131.CrossRefGoogle Scholar
Uytterhoeven, J. B., Christner, L. G. and Hall, W. K., 1965 Studies of the hydrogen held by solids. VIII. The decationated zeolites J. Phys. Chem. 69 21172126.CrossRefGoogle Scholar
Van Cauwelaert, F. H. and Bosmans, H., 1969 Polycations formés dans l’hydrolyse de l’ion aluminium Revue Chim. Miner. 6 611617.Google Scholar
Vaughan, D. E. W. Lussier, R. J. and Rees, L. V. C., 1980 Preparation of molecular sieves based on pillared interlayered clays (PILC) Proc. 5th Int. Conf. Zeolites, Naples, 1980 London Heyden 94101.Google Scholar
Vaughan, D. E. W. Lussier, R. J. and Magee, J. S., 1981 Stabilized pillared clays U.S. Pat. .Google Scholar
Ward, J. C., 1967 The nature of active sites on zeolite. 1. The decationated Y-zeolite J. Catal. 9 225236.CrossRefGoogle Scholar