No CrossRef data available.
Article contents
Potassium status and availability in three Indian soils as determined by 60 extractions with 1 M CaCl2
Published online by Cambridge University Press: 19 March 2025
Abstract
Long-term field experiments have shown that continuous potassium (K) removal depletes soil K levels and alters clay minerals, leading to significant fertility decline. This study aimed to replicate similar findings through a laboratory investigation. The objectives included examining K-release behavior in three soils under continuous K depletion, and analyzing changes in available and non-exchangeable K, K-fixation capacity, and clay minerals. Additionally, the study sought to identify the clay minerals involved in K release and assess the feasibility of simulating long-term cultivation effects through laboratory leaching. A red soil (Alfisol), a black soil (Vertisol), and an alluvial soil (Entisol) from three states of India were each leached 60 times with 1 M CaCl2. The K released after each step was measured. The NH4OAc-K, non-exchangeable K by nitric acid (NEK-HNO3), and sodium tetraphenyl borate (NEK-NaTPB) methods (5 min), clay mineralogy, and K-fixation capacity before and after the 60× leaching were assessed. Total K released over 60× leaching followed the order black > alluvial > red soil. The constant rate of K release was the same for all three soils. The NH4OAc-K showed a significant decrease in all soils, while NEK-HNO3 did not change significantly. The NEK-NaTPB decreased significantly, while the K-fixation capacity increased significantly in the red and the alluvial soils. The K depletion caused a noticeable decline in the relative abundance of 2:1 mixed-layer minerals in the red and the black soils and of illite in the alluvial soil. The trioctahedral illite became depleted in all three soils. The center of gravity of the X-ray diffraction peaks of the 2:1 clay minerals was reduced slightly due to K depletion, which contradicts current beliefs. Sixty leachings of soils with 1 M CaCl2 could only partially simulate the long-term, cultivation (without K fertilization)-induced changes in soil K fertility and clay minerals.
Keywords
- Type
- Original Paper
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of The Clay Minerals Society