Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T22:43:48.803Z Has data issue: false hasContentIssue false

Potassium Fixation by Clay Minerals during Hydrothermal Treatment

Published online by Cambridge University Press:  02 April 2024

Atsuyuki Inoue*
Affiliation:
Geological Institute, College of Arts and Sciences, Chiba University, Chiba 260, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The amount of K fixed in K- and Ca-saturated montmorillonite, vermiculite (trioctahedral), rectorite-type and IMII-ordered mica/montmorillonites was measured as a function of time (1–64 days), temperature (25o-300°C), pH (6.0, 9.7, and 10.7), and K-concentration (0.02 and 1.0 M) in solution. The amount of K fixed by the clays generally increased with increasing temperature, pH, and K-concentration and reached saturation in response to each experimental condition in 5 or 6 days. The K-montmorillonite and K-vermiculite fixed considerable amounts of K even at 25°C. Fixed K in montmorillonite increased with an increase of the layer charge which is also influenced significantly by the interlayer cation. In detail, the behavior in K-fixation was specific to each clay.

The type of structural transformation with K-fixation was different for each clay. In montmorillonite, especially, the type of transformation was related to the cationic composition of the system; in K homoionic system, montmorillonite transformed rapidly into illite/montmorillonite with about 40% expandable layers at 300°C and in a mixed cation system with Ca and K, it reacted gradually to random illite/montmorillonites with increasing temperature. These data indicate that the cation-exchange process of a natural pore solution plays an important role in the gradual transformation of detrital montmorillonite to illite.

Резюме

Резюме

Количества К, фиксированного в К- и Ca-насыщенных монтмориллоните, вермикулите (трехоктаэдрическом), и слюде/монтмориллоните типа ректорита и IMII-упорядоченной, измерялось в зависимости от времени (от 1 до 64 дней), температуры (от 25° до 300°C), рН (6,0, 9,7, и 10,7) и концентрации К (0,02 и 1,0 M) в растворе. Количество К, фиксированного глинами, в основном увеличивалось с увеличением температуры, рН, и концентрации К и достигало насыщения в каждых экспериментальных условиях в течение 5 или 6 дней. К-монтмориллонит и К-вермикулит фиксировали значительные количества К даже при 25°C. Количество К, фиксированного в монтмориллоните, увеличивалось с увеличением слойного заряда, который также подвергался значительно влиянию межслойного катиона. В особенности поведение процесса фиксации К было специфическое для каждой глины. Особенно, в монтмориллоните, тип трансформации зависел от катионного состава системы; в одноионной системе К монтмориллонит быстро трансформировался в иллит/монтмориллонит с около 40% расширяющихся слоев при 300°C, а в системе со смещанными катионами Ca И К, монтмориллонит видоизменялся постепенно при увеличении температуры в неупорядоченный иллит/монтмориллонит. Эти данные указывают на то, что процесс обмена катионов естественных поровых растворов играет важную роль в постепенной трансформации детритального монтмориллонита в иллит. [E.C.]

Resümee

Resümee

Die K-Menge, die an K- und Ca-gesättigten Montmorillonit, Vermiculit (trioktaedrisch), und Montmorillonit vom Rektorit-Typ und IMII-geordneten Glimmer/Montmorillonit gebunden ist, wurde in Abhängigkeit von Zeit (1–64 Tage), Temperatur (25°C–300°C), pH-Wert (6,0, 9,7, und 10,7), und K-Konzentration (0,02 und 1,0 m) der Lösung untersucht. Die K-Menge, die an Tone gebunden wird, steigt im allgemeinen mit zunehmender Temperatur, steigendem pH, und steigender K-Konzentration und erreicht den Sättigungszustand, in Abhängigkeit von den jeweiligen experimentellen Bedingungen, nach 5 bis 6 Tagen. K-Montmorillonit und K-Vermiculit binden beachtliche K-Mengen selbst bei 25°C. Die an Montmorillonit gebundene K-Menge wächst mit zunehmender Schichtladung, die ebenfalls beachtlich durch die Zwischenschichtkationen beeinflußt wird. Im einzelnen ist die K-Bindung für jeden Ton spezifisch.

Die Art der strukturellen Umwandlung durch die K-Bindung war bei jedem Ton anders. Bei Montmorillonit war die Art der Umwandlung von der Zusammensetzung der Kationen im System abhängig; im reinen K-System wandelte sich der Montmorillonit rasch in Illit/Montmorillonit um mit etwa 40% bei 300°C expandierbaren Lagen. In einem gemischten Kationensystem mit Ca und K wandelte sich der Montmorillonit allmählich mit zunehmender Temperatur in unregelmäßige Illit/Montmorillonit-Wechsellagerungen um. Diese Ergebnisse deuten darauf hin, daß der Ionenaustausch mit einer natürlichen Porenlösung eine wichtige Rolle bei der allmählichen Umwandlung von detritischem Montmorillonit in Illit spielt. [U.W.]

Résumé

Résumé

La quantité de K fixée dans la montmorillonite saturée de K et de Ca, dans la vermiculite (trioctaèdrale), et dans les montmorillonites/mica du type rectorite et ordonnées-IMII a été mesurée en fonction du temps (1–64 jours), de la température (25°–300°C), du pH (6,0, 9,7, et 10,7) et de la concentration en K (0,02 et 1,0 M) en solution. La quantité de K fixée dans les argiles a généralement augmenté proportionnellement à la température, au pH et à la concentration en K, et a atteint la saturation vis á vis de chaque condition expérimentale en 5 ou 6 jours. La montmorillonite-K et la vermiculite-K ont fixé des quantités considérables de K même à 25°C K fixé dans la montmorillonite a augmenté proportionnellement à la charge de couche qui est aussi influencée de manière significative par le cation intercouche. En détait, le comportement dans la fixation de K ètait spécifique pour chaque argile.

Le genre de transformation structurale avec la fixation de K était différent pour chaque argile. Dans la montmorillonite, spécialement, le genre de transformation était apparenté à la composition cationique du système; dans un système homoionique K, la montmorillonite s'est rapidement transformée en illite/montmorillonite avec à peu près 40% de couches expansibles à 300°C, et dans un système melangé avec Ca et K, elle a reagi graduellement en des illite/montmorillonites quelconques proportionnellement à une augmentation de température. Ces données indiquent que le procédé d’échange de cations d'une solution naturelle de pores joue un rôle important dans la transformation graduelle de montmorillonite detritique en illite. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

References

Brindley, G. W., 1966 Ethylene glycol and glycerol complexes of smectites and vermiculites Clay Miner. 6 237259.CrossRefGoogle Scholar
Browne, P. R. L. and Ellis, A. J., 1970 The Ohaki-Broadlands hydrothermal area, New Zealand: mineralogy and related geochemistry Amer. J. Sci. 269 97131.CrossRefGoogle Scholar
Burst, J. F. Jr. and Swineford, A., 1959 Post-diagenetic clay mineral environmental relationship in Gulf Coast Eocene Clays and Clay Minerals, Proc. 6th Natl. Conf., Berkeley, California, 1957 New York Pergamon Press 327341.Google Scholar
Burst, J. F. Jr., 1969 Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration Amer. Assoc. Petrol. Geol. Bull. 53 7393.Google Scholar
Eberl, D. D., 1978 Reaction series for dioctahedral smectites Clays & Clay Minerals 26 327340.CrossRefGoogle Scholar
Eberl, D. D., 1978 The reaction of montmorillonite to mixed layer clay: the effect of interlayer alkali and alkaline earth cations Geochim. Cosmochim. Acta 42 17.CrossRefGoogle Scholar
Eberl, D. D., 1980 Alkali cation selectivity and fixation by clay minerals Clays & Clay Minerals 28 161172.CrossRefGoogle Scholar
Eberl, D. D. and Hower, J., 1976 Kinetics of illite formation Geol. Soc. Amer. Bull. 87 13261330.2.0.CO;2>CrossRefGoogle Scholar
Eberl, D. D. and Hower, J., 1977 The hydrothermal transformation of sodium and potassium smectite into mixed layer clay Clays & Clay Minerals 25 215227.CrossRefGoogle Scholar
Eslinger, E. V. and Savin, S. M., 1973 Mineralogy and oxygen isotope geochemistry of the hydrothermal altered rocks of the Ohaki-Broadlands, New Zealand geothermal area Amer. J. Sci. 273 240267.CrossRefGoogle Scholar
Gaultier, J. P., Mamy, J., Mortland, M. M. and Farmer, V. C., 1979 Evolution of exchange properties and crystallographic characteristics of bi-ionic K-Ca montmorillonite submitted to alternate wetting and drying Proc. Intern. Clay Conf., Oxford, 1978 Amsterdam Elsevier 167175.Google Scholar
Grim, R. E., 1968 Clay Mineralogy 2nd ed. New York McGraw-Hill.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence Geol. Soc. Amer. Bull. 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Inoue, A. and Minato, H., 1979 Ca-K exchange reaction and interstratification in montmorillonite Clays & Clay Minerals 27 393401.CrossRefGoogle Scholar
Inoue, A., Minato, H. and Utada, M., 1978 Mineralogical properties and occurrence of illite/montmorillonite mixed layer minerals formed from Miocene volcanic glass in Waga-Omono District Clay Sci. 5 123136.Google Scholar
Lahann, R. W. and Roberson, H. E., 1980 Dissolution of silica from montmorillonite: effect of solution chemistry Geochim. Cosmochim. Acta 44 19371943.CrossRefGoogle Scholar
Mackenzie, R. C., Rosenqvist, Th. and Graff-Petersen, P., 1963 Retention of exchangeable ions by montmorillonite Proc. Int. Clay Conf., Stockholm, 1963, Vol. I Oxford Pergamon Press 183193.Google Scholar
Marshall, C. E., 1964 The Physical Chemistry and Mineralogy of Soils, vol. 1: Soil Materials New York Wiley.Google Scholar
Perry, E. and Hower, J., 1970 Burial diagenesis in Gulf Coast pelitic sediments Clays & Clay Minerals 18 165178.CrossRefGoogle Scholar
Reynolds, R. C. and Hower, J., 1970 The nature of inter-layering in mixed layer illite-montmorillonite Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Roberson, H. E. and Lahann, R. W., 1981 Smectite to illite conversion rates: effects of solution chemistry Clays & Clay Minerals 29 129135.CrossRefGoogle Scholar
Sato, M., 1973 X-ray analysis of interstratified structure Nendo Kagaku 13 3947.Google Scholar
Sawheny, B. L. and Bailey, S. W., 1967 Interstratification in vermiculite Clay and Clay Minerals, Proc. 15th Natl. Conf., Pittsburgh, Pennsylvania, 1966 New York Pergamon Press 7584.Google Scholar
Shainberg, I. and Kemper, W. D., 1966 Hydration status of adsorbed cations Soil Sci. Soc. Amer. Proc. 30 707713.CrossRefGoogle Scholar
Shainberg, I., Kemper, W. D. and Bailey, S. W., 1966 Electrostatic forces between clay and cations as calculated and inferred from electrical conductivity Clays and Clay Minerals, Proc. 14th Natl. Conf, Berkeley, California, 1965 New York Pergamon Press 117132.Google Scholar
Steiner, A., 1968 Clay minerals in hydrothermally altered rocks at Wairakei, New Zealand Clays & Clay Minerals 16 193213.CrossRefGoogle Scholar
Weaver, C. E. and Beck, K. C., 1971 Clay water diagnesis during burial: how mud becomes gneiss Geol. Soc. Amer. Spec. Paper 134 178.Google Scholar
Weir, A. H., Ormerod, E. C. and El Mansey, I. M. I., 1975 Clay mineralogy of sediments of the western Nile delta Clay Miner. 10 369386.CrossRefGoogle Scholar
Yeh, H. and Savin, S. M., 1977 Mechanism of burial metamorphism of argillaceous sediments: 3. O-isotope evidence Geol. Soc. Amer. Bull. 88 13211330.2.0.CO;2>CrossRefGoogle Scholar