Published online by Cambridge University Press: 01 July 2024
Polytypism in trioctahedral 1 : 1 phyllosilicates results from two variable features in the structure. (1) The octabedral cations may occupy the same set of three positions throughout or may alternate regularly between two different sets of positions in successive layers. (2) Hydrogen bonding between adjacent oxygen and hydroxyl surfaces of successive layers can be obtained by three different relative positions of layers: (a) direct superposition of layers, (b) shift of the second layer by a/3 along any of the three hexagonal X-axes of the initial layer, with a positive or negative sense of shift determined uniquely by the octahedral cation set occupied in the lower layer, and (c) shift of the second layer by ± b/3 along Y1 (normal to X1) of the initial layer regardless of octahedral cation sets occupied. Assuming ideal hexagonal geometry, no cation ordering, and no intermixing in the same crystal of the three possible types of layer superpositions, then twelve standard polytypes (plus four enantiomorphs) with periodicities between one and six layers may be derived. Relative shifts along the three X-axes lead to the same layer sequences derived for the micas, namely 1M, 2M1, 3T, 2M2, 2Or, and 6H. Polytypes 1T and 2H1 result from direct superposition of layers. Layer shifts of b/3 lead to polytypes designated 2T, 3R, 2H2, and 6R. The twelve standard 1 : 1 structures can be divided into four groups (A = 1M, 2M1, 3T; B = 2M2, 2Or, 6H; C = 1T, 2T, 3R; D = 2H1, 2H2, 6R) for identification purposes. The strong X-ray reflections serve to identify each group and the weaker reflections differentiate the three structures within each group. Examples of all four groups and of 9 of the 12 individual structures have been identified in natural specimens. Consideration of the relative amounts of attraction and repulsion between the ions in the structures leads to the predicted stability sequence group C > group D > group A > group B, in moderately good agreement with observed abundances of these structural groups.
Le polytypisme des phyllosilicates 1 : 1 trioctahédriques résulte de deux caractéristiques variables de la structure. (1) Les cations octahédriques peuvent occuper le même arrangement de trois positions ou peuvent changer régulièrement entre deux arrangements différents des positions dans des couches successives. (2) La liaison d’hydrogène entre les surfaces adjacentes d’oxygène et d’hydroxyl des couches successives, peut être obtenu en partant de trois positions relatives différentes des couches: (a) superposition directe des couches, (b) déplacement de la deuxième couche par a/3 le long de l’un quelconque des trois axes X hexagonaux de la couche initiale, avec un sens positif ou négatif du déplacement déterminé uniquement par la position du cation octahédrique dans la couche inférieure, et (c) le déplacement de la deuxième couche par ± b/3 le long de Y1 (normale à X1) de la couche initiale, sans égard pour la position du cation octahédrique.
En supposant une géométrie hexagonale idéale, sans ordre des cations, et sans interéchange dans le même crystal des trois types possibles de superpositions des couches, on peut alors dériver douze polytypes standards (plus quatre enantimorphes) avec des périodicités variant entre une et six couches. Les déplacement relatifs le long des trois axes X conduisent aux mêmes séquences des couches dérivées pour les micas, soit 1M, 2M1, 3T, 2M2, 2Or et 6H. Les polytypes 1T et 2H1 résultent de la superposition directe des couches. Les déplacements des couches de b/3 conduisent aux polytypes connus sous la désignation 2T, 3R, 2H2 et 6R.
Les douze structures standards 1 : 1 peuvent être divisées en quatre groupes (A = 1M, 2M1, 3T; B = 2M2, 2Or, 6H; C = 1T, 2T, 3R; D = 2H1, 2H2, 6R) pour les besoins d’identification. Les fortes réflections des rayon X servent à identifier chaque groupe et les réflections plus faibles différencient les trois structures au sein de chaque groupe. Des exemples des quatre groupes et de 9 des 12 structures individuelles ont été identifiées dans des spécimens naturels. La considération des quantités relatives d’attraction et de répulsion entre les ions dans les structures conduit à prédire la séquence de stabilité groupe C groupe D groupe A groupe B, qui s’accordent modérément aux abondances observées dans ces groupes structurels.
Die Polytypie in trioktaedrischen 1 : 1 Phyllosilikaten rührt von zwei veränderlichen Merkmalen im Gefüge her. (1) Die oktaedrischen Kationen können durchwegs in der gleichen Gruppierung von drei Stellungen angeordnet sein oder sie können in aufeinanderfolgenden Schichten jeweils zwischen zwei verschiedenen Gruppierungen der Stellungen abwechseln. (2) Die Wasserstoffbindung zwischen benachbarten Sauerstoff- und Hydroxyloberflächen aufeinanderfolgender Schichten kann durch drei verschiedene Stellungen der Schichten in Beziehung zu einander erhalten werden: (a) unmittelbare Überlagerung der Schichten, (b) Verschiebung der zweiten Schicht um a/3 entlang irgendeiner der drei hexagonalen X-Achsen der Ausgangsschicht, wobei eine positive oder negative Richtung der Verschiebung einzig durch die in der unteren Schicht eingenommene Gruppierung der oktaedrischen Kationen bestimmt wird, und (c) Verschiebung der zweiten Schicht um ± b/3 entlang Y1 (normal zu X1) der Ausgangsschicht ungeachtet der eingenommenen oktaedrischen Kationgruppierungen.
Unter der Annahme idealer hexagonaler Geometrie, ohne Kationenregelung und ohne Vermischung innerhalb des gleichen Kristalls der drei möglichen Arten der Schichtüberlagerungen, lassen sich zwölf Normalpolytypen (plus vier Enantiomorphe) mit Periodizitäten zwischen einer und sechs Schichten ableiten. Relative Verschiebungen entlang der drei X-Achsen führen zu den bereits für die Glimmer abgeleiteten Schichtfolgen, nämlich 1M, 2M1, 3T, 2M2, 2Or und 6H. Die Polytypen 1T und 2H1 werden durch direkte Überlagerung von Schichten erhalten. Schichtverschiebungen um b/3 führen zu Polytypen mit der Bezeichnung 2T, 3R, 2H2 und 6R.
Die zwölf Normal 1 : 1 Gefüge können für Identifizierungszwecke in vier Gruppen eingeteilt werden (A = 1M, 2M1, 3T; B = 2M2, 2Or, 6H; C = 1T, 2T, 3R; D = 2H1, 2H2, 6R). Die starken Röntgenreflexionen diesen zur Identifizierung der verschiedenen Gruppen, während die schwächeren Reflexionen zwischen den drei Strukturen innerhalb jeder Gruppe unterscheiden. Beispiele für alle vier Gruppen, sowie für 9 der zwölf Einzelgefüge konnten in natürlichen Proben aufgefunden werden. Eine Erwägung der relativen Beträge von Anziehung und Abstossung zwischen den Ionen in den jeweiligen Gefügen führt zu der vorhergesagten Stabilitätsfolge Gruppe C > Gruppe D > Gruppe A > Gruppe B, in ziemlich guter Übereinstimmung mit den beobachteten, mengenmässigen Vorkommen dieser Strukturgruppen.
Политипия триоктаэдрических слоистых силикатов 1:1 обусловлена следующими двумя особенностями структуры. (1) Октаэдрические катионы могут занимать либо один и тот же из трех набор положений по всей структуре, либо, упорядоченно чередуясь, могут занимать два набора положений в последовательных структурных слоях. (2) Водородные связи между соседними кислородными и гидроксильными поверхностями последовательных слоев могут реализоваться при трех различных относительных положениях слоев: (а) прямое наложение слоев без смещения; (в) наложение слоев при смещении верхнего слоя на а/3 вдоль любой из трех гексагональных осей X нижнего слоя, причем положительное или отрицательное направление смещения однозначно определяется положением октаэдрических катионов нижнего слоя; (с) наложение слоев при смещении верхнего слоя на ±b/3 вдоль оси У1 (перпендикулярной Х1) нижнего слоя вне зависимости от положения октаэдрических катионов. При предположении гексагональной геометрии, отсутствия упорядочения катионов и невозможности сочетания в одном и том же кристалле 3-х упомянутых типов наложения слоев, могут быть выведены 12 независимых политипов (и 4 энантиоморфных) с периодичностью от одного до щести слоев на элементарную ячейку. Относительные смещения вгонь трех осей X приводят к образованию тех же последовательностей слоев, которые были выведены для слюд, а именно 1М, 2М1, ЗТ, 2М2, 20 и 6Н. Политипы 1Т и 2H1 получаются при прямом наложении слоев без смещения. Смещения слоев на b/3 приводят к образованию политипов, обозначаемых как 2Т, ЗR, 2Н2 и 6R. В целях идентификации 12 полученных независимых структур могут быть разбиты на 4 группы (А = 1М, 2М1, ЗT; В = 2М2, 20, 6Н; С = 1Т, 2Т, ЗR; В = 2Н1, 2Н2, 6R). Каждая группа имеет один и тот же набор сильных рентгеновских рефлексов, по которым может быть проведена идентификация различных групп; слабые рефлексы позволяют различать структуры внутри самих групп. При изучении природных образцов найдены представители всех четырех групп и 9-ти из 12-ти политипных структур. Анализ взаимного притяжения и отталкивания ионов в структурах позволил предсказать относительную устойчивость найденных групп, которая выражается следующей последовательностью: группа С> группа В> группа А> группа В, что находится в относительно хорошем соответствии с наблюдаемой распространенностью этих структурных групп в природе.