Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T14:24:21.221Z Has data issue: false hasContentIssue false

Photochemical Dissolution of Goethite in Acid/Oxalate Solution

Published online by Cambridge University Press:  02 April 2024

R. M. Cornell
Affiliation:
University of Berne, Institute of Inorganic Chemistry, Freiestrasse 3, CH-3000 Berne 9, Switzerland
P. W. Schindler
Affiliation:
University of Berne, Institute of Inorganic Chemistry, Freiestrasse 3, CH-3000 Berne 9, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During photochemical dissolution of goethite in acid/oxalate solution, Fe3+, Fe2+, and CO2 were released and towards the end of the reaction ferrous oxalate precipitated. The dissolution process involved an initial slow stage followed by a much faster reaction. The slow stage was eliminated by addition of 20 ppm Fe2+ to the system at the start of the reaction. The presence of this Fe2+ did not accelerate the secondary dissolution process. Both protons and oxalate ions appear to have been involved in the dissolution process. Dissolution was accelerated by an increase in oxalate concentration (from 0.0025 to 0.025 M) in the system and also depended on pH, reaching a maximum rate at pH 2.6. Highly substituted (15.9 mole % Al) goethite dissolved more slowly per unit area than unsubstituted goethite. Lepidocrocite (γ-FeOOH) dissolved faster than goethite. The first stage of the dissolution process probably proceeded by slow release of Fe3+ through complexation with oxalate adsorbed on the goethite surface. The faster, secondary step appears to have been a reductive dissolution reaction involving adsorbed ferrous oxalate.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Baumgartner, E., Blesa, M. A., Marinovitch, H. A. and Maroto, A. J. G., 1983 Heterogeneous electron transfer pathways in dissolution of magnetite in oxalic acid solution Inorg. Chem. 22 22242226.CrossRefGoogle Scholar
Cornell, R. M. and Giovanoli, R., 1986 Factors that govern the formation of multi-domainic goethites Clays & Clay Minerals 34 557564.CrossRefGoogle Scholar
Cornell, R. M., Posner, A. M. and Quirk, J. P., 1974 Crystal morphology and the dissolution of goethite J. Inorg. Nucl. Chem. 36 19371946.CrossRefGoogle Scholar
Cornell, R. M., Posner, A. M. and Quirk, J. P., 1976 Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH) J. Inorg. Nucl. Chem. 38 563567.CrossRefGoogle Scholar
DeEndreddy, A. S., 1963 Estimation of free iron oxides in soils and clays by a photolytic method Clay Miner. Bull. 9 209217.CrossRefGoogle Scholar
Deyrioux, H. and Peneloux, A., 1969 Contribution à l’étude des oxalates de certains métaux bivalents. 1. Structure crystalline des deux formes allotropique de l’oxalate ferreux dehydrate Bull. Soc. Chim. France 26752681.Google Scholar
Finden, D. A. S. Tipping, E., Jaworski, G. H. M. and Reynolds, C. S., 1984 Light-induced reduction of natural iron(III) oxides and its relevance to phytoplankton Nature 309 783784.CrossRefGoogle Scholar
Fischer, W. R., Schlichtling, E. and Schwertmann, U., 1973 Die Wirkung von zweiwertigen Eisen auf Auflösung und Umwandlung von Eisen(III)-hydroxi-den Pseudologey and Gley: Genesis and Use of Hydromorphic Soils, Proc. Int. Soc. Soil Sci. Trans., Stuttgart, Germany 3744.CrossRefGoogle Scholar
Giovanoli, R. and Brutsch, R., 1974 Dehydration of 7-FeOOH: Direct observation of the mechanism Chimia 28 188191.Google Scholar
Hermann, J. M., Mozzanega, M. N. and Pichat, P., 1983 Oxidation of oxalic acid in aqueous suspensions of semiconductors illuminated with UV or visible light J. Photochem. 22 333343.CrossRefGoogle Scholar
Mann, S., Cornell, R. M. and Schwertmann, U., 1985 The influence of aluminium on iron oxides: A high-resolution electron microscopy study of aluminous goethites Clay Miner. 20 255262.CrossRefGoogle Scholar
Miller, W. P., Zelazny, L. W. and Martens, D. C., 1986 Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids Geoderma 37 113.CrossRefGoogle Scholar
Parfitt, R. L., Farmer, V. C. and Russell, J. D., 1977 Adsorption on hydrous oxides. I. Oxalate and benzoate on goethite J. Soil Sci. 28 2939.CrossRefGoogle Scholar
Parker, C. A., 1953 A new, sensitive chemical actinometer. I. Some trials with potassium ferrioxalate Proc. Royal Soc. London 220 104116.Google Scholar
Schulze, D. G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites Clay Miner. 19 521539.CrossRefGoogle Scholar
Segal, R. G. and Sellars, R. M., 1984 Redox reactions at solid-liquid interfaces Adv. Inorg. Bioinorg. Mechanisms 3 97130.Google Scholar
Sellars, R. M. and Williams, W. J., 1984 High temperature dissolution of nickle chromium ferrite by oxalic acid and nitriloacetic acid Farad. Disc. Chem. Soc. 77 265274.CrossRefGoogle Scholar
Sidhu, P. S., Gilkes, R. J., Cornell, R. M., Posner, A. M. and Quirk, J. P., 1981 Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids Clays & Clay Minerals 29 269279.CrossRefGoogle Scholar
Sillen, L. G. and Martell, A. E., 1964 Stability Constants of Metal-Ion Complexes London The Chemical Society 360361.Google Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit einer Ammonium Oxalat Lö-sung Z. Pflanzenernahr. Dung. Bodenkd. 105 194202.CrossRefGoogle Scholar
Schwertmann, U., 1984 The influence of aluminium on iron oxides: IX. Dissolution of Al-goethite in 6 M HC1 Clay Miner. 19 919.CrossRefGoogle Scholar
Schwertmann, U., 1985 The effect of pedogenic environments on iron oxide minerals Adv. Soil Sci. 1 172200.Google Scholar
Stone, A.T., 1987 Reductive dissolution of manganese (III, IV) oxides: The effect of oxalate and pyruvate Geochim. Cosmochim. Acta .CrossRefGoogle Scholar
Waite, T. W. and Morel, F. M. M., 1984 Photoreductive dissolution of colloidal iron oxide: Effect of citrate J. Colloid Interface Sci. 102 121137.CrossRefGoogle Scholar
Waite, T. D., Torikov, A. and Smith, J. D., 1986 Photoassisted dissolution of colloidal iron oxides by thiol containing compounds. I. Dissolution of hematite (α-Fe2O3) J. Colloid Interface Sci. 112 412420.CrossRefGoogle Scholar
Westall, J. C., 1982 FITEQL, a computer program for determination of chemical equilibrium constants from experimental data .Google Scholar
Zinder, B., Furrer, G. and Stumm, W., 1986 A coordination chemical approach to the kinetics of weathering: II. Dissolution of Fe(III) oxides Geochim. Cosmochim. Acta 50 18161829.CrossRefGoogle Scholar