Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T22:40:12.319Z Has data issue: false hasContentIssue false

Pedogenic Formation of Kaolinite-Smectite Mixed Layers in a Soil Toposequence Developed from Basaltic Parent Material in Sardinia (Italy)

Published online by Cambridge University Press:  28 February 2024

Dominique Righi
Affiliation:
UMR-CNRS 6532 “Hydrogéologie, Argiles, Sols et Altérations” Faculté des Sciences, 86022 Poitiers Cedex, France
Fabio Terribile
Affiliation:
CNR-ISPAIM, PO Box 101 80040 San Sebastiano al Vesuvio, Napoli, Italy
Sabine Petit
Affiliation:
UMR-CNRS 6532 “Hydrogéologie, Argiles, Sols et Altérations” Faculté des Sciences, 86022 Poitiers Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Formation of kaolinite-smectite (K-S) mixed layers in a soil toposequence developed from basaltic parent material was examined. The soil formed in a temperate climate with alternating dry and wet seasons in Sardinia (Italy). Chemical composition and charge characteristics of the smectite component in the K-S mixed layers were analyzed to help determine a mechanism for formation. Soils were sampled at the top, intermediate, and base of a steep (35%) slope. As indicated by X-ray diffraction data, the fine clay fraction (>0.1 μm) in the soils is dominated by K-S with a decreasing proportion of kaolinite from the top (70%) to the base (30%). Rapid internal drainage induced by the slope is probably the major factor responsible for the formation of K-S. Chemical composition and charge characteristics of the smectite component in the K-S were analyzed by X-ray diffraction (intercalation with alkylammonium ions), cation exchanged capacity (CEC) and surface area measurements, and infrared spectroscopy. Results indicate that the smectite component is nearly identical over the soil toposequence. The smectite component is the same with respect to charge magnitude and chemical composition, independent of the proportion of kaolinite and smectite components. This suggests the pedogenic formation of K-S by transformation of smectite through dissolution of some smectite layers and subsequent crystallization of kaolinite between the layers of the remaining smectite crystallites.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Anderson, S.J. and Sposito, G., 1991 Cesium-adsorption method for measuring accessible structural surface charge Soil Science Society of America Journal 55 15691576 10.2136/sssaj1991.03615995005500060011x.CrossRefGoogle Scholar
Aru, A. Baldacini, P. and Vacca, A., 1991 Nota illustrativa alla carta dei suoli della Sardegna. Cagliari, Italia .Google Scholar
Heilman, M.D. Carter, D.L. and Gonzalez, C.L., 1965 The ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area Soil Science 100 409413 10.1097/00010694-196512000-00006.CrossRefGoogle Scholar
Herbillon, A.J. Frankart, R. and Vielvoye, L., 1981 An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence Clay Minerals 16 195201 10.1180/claymin.1981.016.2.07.CrossRefGoogle Scholar
Hofmann, V.U. and Kiemen, R., 1950 Verlust der austausch-fähigkeit von lithium-ionen an bentonit durch erhitzung Zeitung für Anorganische Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Hughes, R.E. Moore, D.M. and Reynolds, R.C. Jr., Murray, H.H. Bund, W.M. and Harvey, C.C., 1993 The nature, detection and occurrence, and origin of kaolin-ite/smectite Kaolin Genesis and Utilization Boulder, Colorado Special Publication No 1, Clay Minerals Society 291323.Google Scholar
Ildefonse, P., 1987 Analyse pétrographique des altérations prémétéoriques et météoriques de deux roches basaltiques (basaltes de Belbex, Cantal et Hawaiite de M’Bouda, Cameroun) Paris Doctoral thesis, Université de Paris 7.Google Scholar
Jaynes, W.F. Bigham, J.M. Smeck, N.E. and Shipitalo, M.J., 1989 Interstratified 1:1-2:1 mineral formation in a polygenetic soil from southern Ohio Soil Science Society of America Journal 53 18881894 10.2136/sssaj1989.03615995005300060046x.CrossRefGoogle Scholar
Jeanroy, E., 1972 Analyse totale des silicates naturels par spectrométrie d’absorption atomique. Application au sol et à ses constituants Chimie Analytique 54 159166.Google Scholar
Kantor, W. and Schwertmann, U., 1974 Mineralogy and genesis of clays in red-black toposequences in Kenya Journal of Soil Science 25 6778 10.1111/j.1365-2389.1974.tb01104.x.CrossRefGoogle Scholar
Lanson, B., 1993 DECOMPXR, X-ray Decomposition Program France ERM, Poitiers.Google Scholar
Mehra, O.P. and Jackson, M.L., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals 7 317327 10.1346/CCMN.1958.0070122.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C. Jr., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edition Oxford Oxford University Press.Google Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., 1990 The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Petit, S. and Decarreau, A., 1990 Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites Clay Minerals 25 181196 10.1180/claymin.1990.025.2.04.CrossRefGoogle Scholar
Reynolds, R.C., 1985 NEWMOD a Computer Program for the Calculation of One-dimensional Diffraction Powders of Mixed-layer Clays .Google Scholar
SISS Società Italiana Scienza del Suelo., 1985 Metodi normalizzati di analisi del suelo .Google Scholar
Soil Survey Staff., 1994 Keys to Soil Taxonomy, 5th edition Virginia Pocahontas Press Blackburg.Google Scholar
Srodon, J., 1980 Synthesis of mixed-layer kaolinite/smectite Clays Clay Minerals 28 419424 10.1346/CCMN.1980.0280603.CrossRefGoogle Scholar
Velde, B., 1992 Introduction to Clay Minerals. Chemistry, Origins, Uses and Environmental Significance London Chapman & Hall 10.1007/978-94-011-2368-6.CrossRefGoogle Scholar
Wilson, M.J., Schultz, L.G. van Olphen, H. and Mupton, F.A., 1987 Soil smectites and related interstratified minerals: Recent developments Proceedings of the International Clay Conference, Denver 167173.Google Scholar
Wilson, M.J. and Cradwick, P.D., 1972 Occurrence of interstratified kaolinite-montmorillonite in some Scottish soils Clay Minerals 9 435437 10.1180/claymin.1972.009.4.08.CrossRefGoogle Scholar
Yerima, B.P.K. Calhoun, E.G. Senkayi, A.L. and Dixon, J.B., 1985 Occurrence of interstratified kaolinite-smectite in El Salvador Vertisols Soil Science Society of America Journal 49 462466 10.2136/sssaj1985.03615995004900020038x.CrossRefGoogle Scholar