Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T13:35:16.207Z Has data issue: false hasContentIssue false

Particle Geometry and Optical Density of Clay Suspensions

Published online by Cambridge University Press:  01 July 2024

N. Lahav*
Affiliation:
Northern Plains Branch, Soil and Water Conservation Research Division, Agricultural Research Service, USDA Colorado Agricultural Experiment Station USDA Colorado State University, Fort Collins, 1968–69
*
Presently, at The Hebrew University of Jerusalem, the Faculty of Agriculture, Rehovot, Israel.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Data on montmorillonite and illite collected by A. Kahn were further analyzed to show the relationship between particle geometry and the optical density (OD) of the clay suspensions. A correction was introduced to the calculations of the minor dimension of the montmorillonite particles which took into account the volume of water between unit layers.

The assumption of disc geometry which was used by A. Kahn in the calculations of the clay particle dimension was found to be consistent with his OD measurements, thus showing that optical measurements can be used to find an equivalent radius of montmorillonite and illite when the general geometry of the particles is the same.

Résumé

Résumé

Les données sur la montmorillonite et l'illite rassemblées par A. Kahn ont été analysées plus en détail afin de montrer la relation existant entre la géométrie des particules et la densité optique (O.D.) des suspensions d'argile. On a introduit une correction dans les calculs de la plus petite dimension des particules de montmorillonite, qui tient compte du volume de l'eau entre les feuillets élémentaires.

L'hypothèse de la forme en disque qui avait été utilisée par A. Kahn dans les calculs de dimension de la particule d'argile s'est révélée en accord avec ses mesures de O.D. ce qui démontre donc que les déterminations optiques peuvent être utilisées pour trouver un rayon équivalent de la montmorillonite et de l'illite quand la géométrie générale des particules est la même.

Kurzreferat

Kurzreferat

Die durch A. Kahn gesammelten Messwerte an Montmorillonit und Illit wurden weiter analysiert um die Beziehungen zwischen der Teilchengeometrie und der optischen Dichte (OD) der Tonsuspensionen aufzuzeigen. Es wurde eine Korrektur der Berechnungen der kleinen Dimension der Montmorillonityeilchen eingeführt, die das Volumen von Wasser zwischen den Einheitsschichten berücksichtigt.

Es wurde festgestellt, dass die von A. Kahn in den Berechnungen der Tonteilchendimension verwendete Annahme der Scheibengeometrie mit seinen optischen Dichtemessungen vereinbar ist, womit gezeigt wird, dass optische Messungen verwendet werden können um einen äquivalenten Radius von Montmorillonit und Illit zu finden wenn die allgemeine Geometrie der Teilchen die gleiche ist.

Резюме

Резюме

Были подвергнуты анализу собранные А. Каном данные о монтмориллоните и иллите для выяснения соотношения между геометрией частиц и оптической плотностью (ОП) глинистой суспензии. Введена поправка в вычислениях малых размеров частиц монтмориллонита с учетом объема воды между единичными слоями. Показано, что допущение о диско-видной форме, которое использовал А. Кан при вычислении размера глинистой частицы, согласуется с его измерениями ОП; это указывает на возможность использовать оптические измерения для определения эквивалентного радиуса частиц монтмориллонита и иллита при одинаковой геометрии частиц.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

Footnotes

*

Contributions from Scientific Series Paper No. 1573.

References

Banin, A. and Lahav, N., (1968) Particle size and optical properties of montmorillonite in suspension Israel J. Chem. 6 235250.CrossRefGoogle Scholar
Doty, P. and Steiner, R. F., (1950) Light scattering and spectrophotometry of colloidal solutions J. Chem. Phys.n 12111220.CrossRefGoogle Scholar
Flory, P. J., (1953) Principles of Polymer Chemistry. New York Cornell University Press.Google Scholar
Grim, R., (1968) Clay Mineralogy. New York McGraw-Hill.Google Scholar
Kahn, A., (1958) The flocculation of sodium mont-morillonite by electrolytes J. Colloid. Sci. 13 5161.CrossRefGoogle Scholar
Kahn, A., (1959) Studies on the size and shape of clay particles in aqueous suspension Clays and Clay Minerals 6 220236.Google Scholar
Kelley, O. J. and Shaw, B. T., (1942) Studies of clay particles with the electron microscope—III. Hydro-dynamic considerations in relation to shape of particles Soil. Sci. Soc. Am. Proc. 7 5868.CrossRefGoogle Scholar
Lahav, N. and Banin, A., (1970) Molecular weight of montmorillonite from optical transmission measurements Soil Sci. Soc. Am. Proc. 34 358360.CrossRefGoogle Scholar
Lahav, N. and Banin, A., (1968) Effect of various treatments on the optical properties of montmorillonite suspensions IsraelJ. Chem. 6 285294.CrossRefGoogle Scholar
Mering, J., (1946) On the hydration of montmorillonite Trans. Faraday Soc. 42B 205.CrossRefGoogle Scholar
Norrish, K., (1954) Manner of swelling of montmorillonite Nature, Lond. 173 256257.CrossRefGoogle Scholar
Norrish, K. and Quirk, J. P., (1954) Crystalline swelling of montmorillonite. Use of electrolytes to control swelling Nature, Lond. 173 255256.CrossRefGoogle Scholar
Posner, A. M. and Quirk, J. P., (1964) Changes in basal spacing of montmorillonite in electrolyte solutions J. Colloid. Sci. 19 798812.CrossRefGoogle Scholar
Quirk, J. P., (1968) Particle interaction and soil swelling Israel J. Chem. 6 213234.CrossRefGoogle Scholar
van de Hülst, (1957) Light Scattering by Small Particles. New York Wiley.Google Scholar
van Olphen, H., (1963) An Introduction to Clay Colloid Chemistry. New York Interscience.Google Scholar