Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T02:25:28.990Z Has data issue: false hasContentIssue false

Partial Dissolution of Glauconitic Samples: Implications for the Methodology of K-Ar and Rb-Sr Dating

Published online by Cambridge University Press:  01 January 2024

Arkadiusz Derkowski*
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002, Kraków, Poland
Jan Środoń
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002, Kraków, Poland
Wojciech Franus
Affiliation:
Department of Geotechnics, Lublin University of Technology, Nadbystrzycka 40, 20-618, Lublin, Poland
Peter Uhlík
Affiliation:
Department of Geology of Mineral Deposits, Comenius University, Mlynská dolina, 842 15, Bratislava, Slovakia
Michał Banaś
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002, Kraków, Poland
Grzegorz Zieliński
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002, Kraków, Poland
Maria Čaplovičová
Affiliation:
Department of Geology of Mineral Deposits, Comenius University, Mlynská dolina, 842 15, Bratislava, Slovakia
Małgorzata Franus
Affiliation:
Department of Geotechnics, Lublin University of Technology, Nadbystrzycka 40, 20-618, Lublin, Poland
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The K-Ar dating of glauconite has been used as an important stratigraphic tool for many decades. The application of this technique is limited to pure glauconites, free of detrital contamination by K-bearing phases, often not easy to detect. This study extends the application of isotope dating to the contaminated glauconites and offers a precise technique for detecting the detrital contamination of glauconites.

The most common K-bearing detrital contaminants have smaller (K-feldspars, Al-rich dioctahedral micas) or greater (trioctahedral micas) dissolution rates than glauconite in extremely low pH solutions. The differences in the dissolution rates can be applied to evaluate the purity of the glauconite and its crystallization age.

The interlaboratory GLO glauconite standard and grain-size fractions separated from glauconitic sandstones of the Paleogene (sample GL) and Jurassic (sample GW8) ages were treated with acid (3M HCl, at 99±2°C) for different reaction times (0.5–7 h) and measured for their apparent isotopic ages.

Microporous amorphous silica with large specific surface area is the solid product of the reaction and its content increases with reaction time. The K-Ar dates (apparent ages) of the solid residues increase significantly with reaction time: from 44.6 to 107 Ma for the GL sample and from 125.7 to 394.7 Ma for GW8. The increase is negligible in the case of the GLO standard. The Rb-Sr data of the GL sample were modeled using initial 87Sr/Sr ratios of 0.707–0.709, which resulted in a 29.9–35.8 Ma date for the untreated portions of GL, and ∼42.6 Ma after 7 h of treatment.

The increase of isotopic K-Ar date with increasing time of dissolution is interpreted to be a result of increasing concentration of detrital, acid-resistant, K-bearing minerals, observed also with the electron microscope and X-ray diffraction. Probabilistic modeling based on single (K-Ar) or double (K-Ar and Rb-Sr) isotopic systems evaluated the isotopic ages of the detrital and authigenic minerals, and their K2O and Rb concentrations. The crystallization ages computed using these two methods are: 24.0, 26.5, and 32.3 Ma for the GL material, and 117.3–121.8 Ma for the GW8 series.

The proposed method based on partial dissolution is a potential tool for evaluating the reliability of glauconite dating.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Amorosi, A., 1997 Detecting compositional, spatial, and temporal attributes of glaucony: a tool of provenance research Sedimentary Geology 109 135153 10.1016/S0037-0738(96)00042-5.CrossRefGoogle Scholar
Aronson, J.L. and Douthitt, C.B., 1986 K/Ar systematics of an acid-treated illite/smectite: implications for evaluating age and crystal structure Clays and Clay Minerals 34 473482 10.1346/CCMN.1986.0340414.CrossRefGoogle Scholar
Bachliński, R. and Smulikowski, W., 2002 Preliminary Rb-Sr isotope study of the Karkonosze-Kowary gneisses and related rocks Mineralogical Society of Poland, Special Papers 20 5356.Google Scholar
Banner, J.L., 2004 Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy Earth-Science Reviews 65 141194 10.1016/S0012-8252(03)00086-2.CrossRefGoogle Scholar
Besson, G. and Drits, V.A., 1997 Refined relationships between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the OH stretching region. Part I: identification of the stretching bonds Clays and Clay Minerals 45 158169 10.1346/CCMN.1997.0450204.CrossRefGoogle Scholar
Bonhomme, M.R., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R., and Winkler, R. (1975) Méthode de datation potassium-argon. Appareillage et technique. Note technique Inst. Géol. Univ. Strasbourg, 3, 53 pp.Google Scholar
Brindley, G.W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Brookins, D.G. Register, J.K. Jr. and Krueger, H.W., 1980 Potassium-argon dating of polyhalite in southeastern New Mexico Geochimica et Cosmochimica Acta 44 635637 10.1016/0016-7037(80)90153-2.CrossRefGoogle Scholar
Catanzaro, E.J. Murphy, T.J. Garner, E.L. and Shields, W.R., 1969 Absolute isotopic abundance ratio and atomic weight of terrestrial rubidium Journal of Research of the U.S. National Bureau of Standards 73A 511516 10.6028/jres.073A.041.CrossRefGoogle ScholarPubMed
Chaudhuri, S. Środoń, J. and Clauer, N., 1999 K-Ar dating of the illitic fractions of Estonian “blue clay” treated with alkylammonium cations Clays and Clay Minerals 47 96102 10.1346/CCMN.1999.0470110.CrossRefGoogle Scholar
Clauer, N. Chaudhuri, S. Kralik, M. and Bonnot-Courtois, C.h., 1993 Effects of experimental leaching on Rb-Sr and K-Ar isotopic systems and REE contents of diagenetic illite Chemical Geology 103 116 10.1016/0009-2541(93)90287-S.CrossRefGoogle Scholar
Dudek, T. Środoń, J. Eberl, D.D. Elsass, F. and Uhlík, P., 2002 Thickness distribution of illite crystals in shales. I: X-ray diffraction vs. High-resolution transmission electron microscopy measurements Clays and Clay Minerals 50 562577 10.1346/000986002320679305.CrossRefGoogle Scholar
Elliott, W.C., Wampler, J.M., and Elser, A.M. (2002) Clues to the chemical character of the Twiggs Clay glaucony from X-ray diffraction and chemical extractions. 39thAnnual Meeting of the Clay Minerals Society, Abstracts with Program, p. 74.Google Scholar
Espantaleón, A.G. Nieto, J.A. Fernández, M. and Marsal, A., 2003 Use of activated clays in the removal of dyes and surfactants from tannery waste waters Applied Clay Science 24 105110 10.1016/S0169-1317(03)00153-4.CrossRefGoogle Scholar
Evernden, J.F. Curtis, G.H. Obradovich, J. and Kistler, R., 1961 On the evaluation of glauconite and illite for dating sedimentary rocks by the potassium-argon method Geochimica et Cosmochimica Acta 23 7899 10.1016/0016-7037(61)90089-8.CrossRefGoogle Scholar
Gazda, L. and Karaś, S., 2002 Trzeciorzêdowe piaski kwarcowe Niziny Lubartowskiej (Tertiary quartz sands from the Lubartów Lowland; in Polish) Scientific papers of the Institute of Mining, Polytechnic of Wroclaw 97 81188.Google Scholar
Gradstein, F.M. Ogg, J.G. and Smith, A.G., 2004 A Geologic Time Scale 2004 Cambridge, UK Cambridge University Press 10.4095/215638.CrossRefGoogle Scholar
Gregg, S.J. and Sing, K.S.W., 1982 Adsorption, Surface Area and Porosity 2nd London Academic Press.Google Scholar
Hassan, M.S. and Baioumy, H.M., 2006 Structural and chemical alteration of glauconite under progressive acid treatment Clays and Clay Minerals 54 491499 10.1346/CCMN.2006.0540410.CrossRefGoogle Scholar
Jackson, M.L., 1969 Soil Chemical Analysis — Advanced Course 2nd Madison, USA Published by the author, University of Wisconsin.Google Scholar
Józefaciuk, G. and Bowanko, G., 2002 Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals Clays and Clay Minerals 50 771783 10.1346/000986002762090308.CrossRefGoogle Scholar
Kaim, A., 2002 Gradual evolution of the Early Cretaceous marine gastropod Rissoina lineage in central Poland Acta Palaeontologica Polonica 47 667672.Google Scholar
Kalinowski, B.E. and Schweda, P., 1996 Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4 at room temperature Geochimica et Cosmochimica Acta 60 367385 10.1016/0016-7037(95)00411-4.CrossRefGoogle Scholar
Kelley, S., 2002 Excess argon in K-Ar and Ar-Ar geochronology Chemical Geology 188 122 10.1016/S0009-2541(02)00064-5.CrossRefGoogle Scholar
Komadel, P., 2000 Chemically modified smectites Clay Minerals 38 127138 10.1180/0009855033810083.CrossRefGoogle Scholar
Łącka, B. Giresse, P. Wesołowska, T. and der Kubiatowicz-van Baan, W., 1989 Diagenesis of Neocomian marine fine-grained sediments from Tomaszósw Syncline (Central Poland) Mineralogical Archives 43 1739.Google Scholar
Łozńska-Stępień, H. Rytel, A. and Saliński, P., 1985 Objaśnienia do szczegółowej mapy geologicznej Polski. Arkusz Lubartów. (Explanations of the detailed geological map of Poland — LubartówArea.) Warszawa Wydawnictwa Geologiczne.Google Scholar
Madejová, J., 2003 FTIR techniques in clay mineral studies Vibrational Spectroscopy 31 110 10.1016/S0924-2031(02)00065-6.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Janek, M. and Komadel, P., 1998 Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite Spectrochimica Acta A 54 13971406 10.1016/S1386-1425(98)00040-7.CrossRefGoogle Scholar
Manghnani, M.H. and Hower, J., 1964 Glauconites: cation exchange capacities and infrared spectra. Part I. The cation exchange capacity of glauconite American Mineralogist 49 586598.Google Scholar
Marcinowski, R. Rudowski, S. and Barczyk, W., 1980 Biała Góra II — kopalnia piaskoów szklarskich — alb środkowy i gósrny (in Polish) Przew. 52 Zjazdu PTG, Belchatów Warszawa Wydawnictwa Geologiczne 221226.Google Scholar
Morton, J.P. and Long, L.E., 1980 Rb-Srdating of Paleozoic glauconite from the Llano region, central Texas Geochimica et Cosmochimica Acta 44 663672 10.1016/0016-7037(80)90156-8.CrossRefGoogle Scholar
Morton, J.P. and Long, L.E., 1984 Rb-Sr ages of glauconite recrystallization: dating times of regional emergence above sea level Journal of Sedimentary Petrology 54 495506.Google Scholar
Novák, I. and Číčel, B., 1978 Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition Clays and Clay Minerals 25 341344 10.1346/CCMN.1978.0260504.CrossRefGoogle Scholar
Odin, G.S., 1969 Méthode de separation des grains de glauconie intérêt de leur étude morphologique et structurale Revue de Géologie Dynamique et de Géographie Physique XI2 171176.Google Scholar
Odin, G.S. and Odin, G.S., 1982 How to measure glaucony ages Numerical Dating in Stratigraphy Chichester, UK John Wiley & Sons 387403.Google Scholar
Odin, G.S. and Odin, G.S., 1988 Glaucony from the Gulf of Guinea Green Marine Clays Amsterdam Elsevier 225249.CrossRefGoogle Scholar
Odin, G.S. Dodson, M.H. and Odin, G.S., 1982 Zero isotopic age of glauconites Numerical Dating in Stratigraphy Chichester, UK John Wiley & Sons 277305.Google Scholar
Odin, G.S. and Matter, A., 1981 De glauconiarum origine Sedimentology 28 611641 10.1111/j.1365-3091.1981.tb01925.x.CrossRefGoogle Scholar
Olsen, J.C., 1910 A Textbook of Quantitative Chemical Analysis 189.Google Scholar
Orsini, L. and Remy, J.C., 1976 Utilisation du chlorure de cobaltihexammine pour la déstermination simultanée de la capacité d’échange et des bases échangeables des sols Science du Sol 4 269275.Google Scholar
Sandler, A. Harlavan, Y. and Steinitz, G., 2004 Early formation of K-feldspar in shallow-marine sediments at near-surface temperatures (southern Israel): evidence from K-Ar dating Sedimentology 51 323338 10.1111/j.1365-3091.2004.00626.x.CrossRefGoogle Scholar
Srasra, E. and Trabelsi-Ayedi, M., 2000 Textural properties of acid activated glauconite Applied Clay Science 17 7184 10.1016/S0169-1317(00)00008-9.CrossRefGoogle Scholar
Steiger, R.H. and Jäger, E., 1977 Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology Earth and Planetary Science Letters 36 359362 10.1016/0012-821X(77)90060-7.CrossRefGoogle Scholar
Stephenson, N.C.N., 2000 Geochemistry of granulite-facies granitic rocks from Battye Glacier, northern Prince Charles Mountains, East Antarctica Australian Journal of Earth Sciences 47 8394 10.1046/j.1440-0952.2000.00762.x.CrossRefGoogle Scholar
Środoń, J. Eberl, D.D. and Drits, V., 2000 Evolution of fundamental particle-size during illitization of smectite and implications for reaction mechanism Clays and Clay Minerals 48 446458 10.1346/CCMN.2000.0480405.CrossRefGoogle Scholar
Środoń, J. Drits, V.A. McCarty, D.K. Hsieh, J.C.C. and Eberl, D.D., 2001 Quantitative XRD analysis of clay-rich rocks from random preparations Clays and Clay Minerals 49 514528 10.1346/CCMN.2001.0490604.CrossRefGoogle Scholar
Środoń, J. Clauer, N. Banaś, M. and Wójtowicz, A., 2006 K-Ar evidence for a Mesozoic thermal event superimposed on burial diagenesis of the Upper Silesia Coal Basin Clay Minerals 41 671692.CrossRefGoogle Scholar
Temuujin, J. Okada, K. and MacKenzie, K.J.D., 2003 Preparation of porous silica from vermiculite by selective leaching Applied Clay Science 22 187195 10.1016/S0169-1317(02)00158-8.CrossRefGoogle Scholar
Tessier, D. (1984) Etude experimentale de l’organisation des materiaux argileux. Doctoral thesis, University of Paris, 361 pp.Google Scholar
Thompson, G.R. and Hower, J., 1973 An explanation for low radiometric ages from glauconite Geochimica et Cosmochimica Acta 37 14731491 10.1016/0016-7037(73)90084-7.CrossRefGoogle Scholar
Thompson, G.R. and Hower, J., 1975 The mineralogy of glauconite Clays and Clay Minerals 23 289300 10.1346/CCMN.1975.0230405.CrossRefGoogle Scholar
Uberna, J. and Odrzywolska-Bieńkowa, E., 1977 Nowe stanowiska osadów górnoeoceńskich na obszarze północnej Lubelszczyzny (in Polish) Kwartalnik Geologiczny 21 7387.Google Scholar
Uhlík, P. Šucha, V. Eberl, D.D. Puškelová, L. and Čaplovičová, M., 2000 Evolution of pyrophyllite particle sizes during dry grinding Clay Minerals 35 423432 10.1180/000985500546774.CrossRefGoogle Scholar
Witkowski, A., 1967 O gatunku Endemoceras (Lyticoceras) Noricum (Roem) z kredy dolnej niecki tomaszowskiej (in Polish) Kwartalnik Geologiczny 11 637647.Google Scholar
Yadav, V.P. Sharma, T. and Saxena, V.K., 2000 Dissolution kinetics of potassium from glauconitic sandstone in acid lixiviant International Journal of Mineral Processing 60 1536 10.1016/S0301-7516(99)00083-6.CrossRefGoogle Scholar