Hostname: page-component-5f745c7db-nc56l Total loading time: 0 Render date: 2025-01-06T15:28:28.610Z Has data issue: true hasContentIssue false

Parallel intergrowths in cronstedtite-1T: Implications for structure refinement

Published online by Cambridge University Press:  01 January 2024

Slavomil Ďurovič*
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-84236 Bratislava, Slovak Republic
Jiří Hybler
Affiliation:
Institute of Physics, Science Academy of the Czech Republic, Na Slovance 2, CZ-18221, Praha, Czech Republic
Toshihiro Kogure
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cronstedtite is a member of the kaolin-serpentine group. It yields a wealth of more or less disordered polytypes. The crystals of polytype 1T (space group P31m, a = 5.512, c = 7.106 Å) contain, within coherently scattering blocks, variable concentrations of stacking faults so that domains of the basic 3D periodic structure can be shifted by 1/3 (a2a1) or 1/3(a1a2). These so-called OD parallel intergrowths have been confirmed by high-resolution transmission electron microscopy. The effect manifests itself in the diffraction pattern so that reflections with h-k = 3n — the family reflections — are always sharp, whereas remaining reflections — the characteristic polytype reflections — may be smeared out parallel to c*. The intensities of the latter are thus underestimated during diffractometer measurements. An analysis of such multiple OD intergrowths reveals that the moduli of structure factors for all characteristic (i.e. non-family) polytype reflections are reduced relative to those calculated for the non-intergrown basic structure, by a common factor. This fact usually leads to the appearance of ghost peaks in Fourier maps and to their erroneous interpretation. The structure of the basic model can, however, be refined much better if two scale factors are assigned to the family and non-family reflections, respectively.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Bailey, S.W., (1969) Polytypism of trioctahedral 1:1 layer silicates Clays and Clay Minerals 17 355371 10.1346/CCMN.1969.0170605.Google Scholar
Dornberger-Schiff, K. (1964) Grundzüge einer Theorie der OD-Strukturen aus Schichten. Abhandlungen der deutschen Akademie der Wissenschaften zu Berlin, Klasse für Chemie, Geologie und Biologie, 3, 107 pp.Google Scholar
Dornberger-Schiff, K., (1966) Lehrgang über OD-Strukturen Berlin Akademie Verlag 135 pp.Google Scholar
Dornberger-Schiff, K. and Ďurovič, S., (1975) OD interpretation of kaolinite-type structures — I: Symmetry of kaolinite packets and their stacking possibilities Clays and Clay Minerals 23 219229 10.1346/CCMN.1975.0230310.Google Scholar
Ďurovič, S. and Wilson, A.J.C., (1992) Layer stacking in general polytypic structures International Tables for Crystallography, Volume C 2nd Dordrecht, The Netherlands Kluwer Academic Publishers 752765 1999 (A.J.C. Wilson and E. Prince, editors). Kluwer Academic Publishers, Dordrecht, The Netherlands].Google Scholar
Ďurovič, S., Chapuis, G. and Paciorek, W., (1994) Significance of superposition structures in the polytypism of phyllosilicates International Conference on Aperiodic Crystals, Aperiodic’ 94 Singapore/New Jersey/London/Hong Kong World Scientific 595599.Google Scholar
Ferraris, G. Gula, A. Ivaldi, G. Nespolo, M. Sokolova, E. Uvarova, Y. and Khomyakov, A.P., (2001) First structure determination of an MDO-2O mica polytype associated with a 1M polytype European Journal of Mineralogy 13 10131023 10.1127/0935-1221/2001/0013-1013.Google Scholar
Fichtner, K., (1977) Zur Symmetriebeschreibung von OD-Kristallstrukturen durch Brandtsche und Ehresmannsche Gruppoide Beiträge zur Algebra und Geometrie 6 7199.Google Scholar
Hybler, J., (1997) Determination of crystal structures of minerals affected by twinning Prague, Czech Republic Faculty of Sciences, Charles University PhD thesis.Google Scholar
Hybler, J. Petříček, V. Ďurovič, S. and Smrčok, L., (2000) Refinement of the crystal structure of cronstedtite-1T. Clays and Clay Minerals 48 331338 10.1346/CCMN.2000.0480304.CrossRefGoogle Scholar
Hybler, J. Petříček, V. Fábry, J. and Ďurovič, S., (2002) Refinement of the crystal structure of cronstedtite-2H 2 Clays and Clay Minerals 50 601613 10.1346/000986002320679332.Google Scholar
Kogure, T., (2002) Identification of polytypic groups in hydrous phyllosilicates using Electron Back-Scattering Patterns (EBSPs) American Mineralogist 87 16781685 10.2138/am-2002-11-1217.Google Scholar
Kogure, T. Hybler, J. and Ďurovič, S., (2001) A HRTEM study of cronstedtite: determination of polytypes and layer polarity in trioctahedral 1:1 phyllosilicates Clays and Clay Minerals 49 310317 10.1346/CCMN.2001.0490405.Google Scholar
Kogure, T. Hybler, J. and Yoshida, H., (2002) Coexistence of two polytypic groups in cronstedtite from Lostwithiel, England Clays and Clay Minerals 50 504513 10.1346/000986002320514226.Google Scholar
Mellini, M. Weiss, Z. Rieder, M. and Drábek, M., (1996) Cs-ferriannite as a possible host for waste cesium: crystal structure and synthesis European Journal of Mineralogy 8 12651271 10.1127/ejm/8/6/1265.Google Scholar
Nespolo, M. Ďurovič, S., Mottana, A. Sassi, F.P. Thompson, J.B. Jr. and Guggenheim, S., (2002) Crystallographic basis of polytypism and twinning in micas Micas: Crystal Chemistry and Metamorphic Petrology Washington, D.C. Mineralogical Society of America 155279 10.1515/9781501509070-009 and Academia Nationale dei Lincei, Roma.Google Scholar
Nespolo, M. and Ferraris, G., (2001) Effects of the stacking faults on the calculated electron density of mica polytypes — The Ďurovič effect European Journal of Mineralogy 13 10351045 10.1127/0935-1221/2001/0013-1035.Google Scholar
Radoslovich, E.W., (1961) Surface symmetry and cell dimension of layer-lattice silicates Nature (London) 191 6768 10.1038/191067a0.Google Scholar
Smrčok, L. Ďurovič, S. Petříček, V. and Weiss, Z., (1994) Refinement of the crystal structure of cronstedtite-3T Clays and Clay Minerals 42 544551 10.1346/CCMN.1994.0420505.CrossRefGoogle Scholar
Varček, C. Vasconcelos, J.M.M. Petrova, R. and Fejdi, P., (1990) Cronstedtite, (Fe22+Fe3+)(SiFe3+O5)(OH)4 from the vein Klement, Rožňava Mineralia Slovaca 22 565567 (in Slovak).Google Scholar