Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T01:33:12.842Z Has data issue: false hasContentIssue false

Oxygen Isotope Study of Chromium-Bearing Kaolinite and Dickite from Teslić, Yugoslavia

Published online by Cambridge University Press:  02 April 2024

Yuch-Ning Shieh
Affiliation:
Department of Geosciences, Purdue University, West Lafayette, Indiana 47907
Zoran Maksimović
Affiliation:
Faculty of Mining and Geology, University of Belgrade, 11000 Belgrade, Yugoslavia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Note
Copyright
Copyright © 1982, The Clay Minerals Society

References

Brindley, G. W., Brindley, G. W. and Brown, G., 1980 Quantitative X-ray mineral analysis of clays Ch. 7, in Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 411.Google Scholar
Clayton, R. N., O’Neil, J. R. and Mayeda, T., 1972 Oxygen isotope exchange between quartz and water J. Geophys. Res. 77 30573067.CrossRefGoogle Scholar
Jackson, M. L., 1975 Soil Chemical Analysis: Advanced Course 2nd ed. Wisconsin Madison 514.Google Scholar
Kulla, J. B. and Anderson, T. F., 1978 Experimental oxygen isotope fractionation between kaolinite and water U.S. Geol. Surv. Open-File Rept. 78–701 234235.Google Scholar
Lawrence, J. R., Taylor, H. P. Jr., 1972 Hydrogen and oxygen isotope systematics in weathering profiles Geochim. Cosmochim. Acta 36 13771393.CrossRefGoogle Scholar
Lombardi, G. and Sheppard, S. M. F., 1977 Petrographic and isotopic studies of the altered acid volcanics of the Tolfa-Cerite area, Italy: the genesis of the clays Clay Miner. 12 147162.CrossRefGoogle Scholar
Maksimovic, Z. (1973) Nickel clay minerals in some laterites, bauxites and oolitic iron ores: in 6th Conference on Clay Mineralogy and Petrology, Czechoslovakia, 1971, Konta, J., ed., 119134.Google Scholar
Maksimovic, Z. and Crnkovic, B., 1968 Halloysite and ka-olinite formed through the alteration of ultramafic rocks Trans. Intern. Geol. Congress, Prague 14 95105.Google Scholar
Maksimovic, Z., White, J. L. and Logar, M., 1981 Chro-mium-bearing dickite and chromium-bearing kaolinite from Teslic, Yugoslavia Clays & Clay Minerals 29 213218.CrossRefGoogle Scholar
Matsuhisa, Y., Goldsmith, J. R. and Clayton, R. N., 1979 Oxygen isotopic fractionation in the system quartz-albite-anorthite-water Geochim. Cosmochim. Acta 43 11311140.CrossRefGoogle Scholar
O’Neil, J. R., Adami, L. H. and Epstein, S., 1975 Revised value for the 18O fractionation between CO2 and water at 25°C U.S. Geol. Surv. J. Research 3 623624.Google Scholar
Savin, S. M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochim. Cosmochim. Acta 34 2542.CrossRefGoogle Scholar
Sheppard, S. M. F., Nielsen, R. L. and Taylor, H. P., 1969 Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits Econ. Geol. 64 755777.CrossRefGoogle Scholar
Shieh, Y. N. and Suter, T. G., 1979 Formation conditions of authigenic kaolinite and calcite in coals by stable isotope determinations Clays & Clay Minerals 27 154156.CrossRefGoogle Scholar
Taylor, H. P. Jr., 1974 The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition Econ. Geol. 69 843883.CrossRefGoogle Scholar