Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T19:06:22.009Z Has data issue: false hasContentIssue false

Origin of the Mg-Smectite at the Cretaceous/Tertiary (K/T) Boundary at Stevns Klint, Denmark

Published online by Cambridge University Press:  28 February 2024

W. Crawford Elliott*
Affiliation:
Department of Geological Sciences, Case Western Reserve University, Cleveland, Ohio 44106
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The clay mineralogy and major element geochemistry of four distinct layers within the Cretaceous/Tertiary (K/T) boundary marl (i.e., II, IIIa, IIIb, and IV) at Stevns Klint, Denmark, including “impact layer” (layer IIIa), were examined, and there was not a marked change in the clay mineralogy throughout this K/T boundary marl. A magnesium smectite (i.e., Mg-smectite) was the predominant clay mineral at the K/T boundary not only at Stevns Klint and at Nye Kløv; it was also found to be the predominant clay mineral in the K/T boundary at Karlstrup Quarry. In addition, Mg-smectite was found in a smectitic marl 32 meters below the K/T boundary at the Limhamn Quarry (near Malmö, Sweden), and it did not have anomalous concentrations of iridium or other siderophile trace elements. Given its occurrence in a Maastrichtian marl, it is therefore argued that the Mg-smectite is not derived from meteorite impact.

The rare earth element (REE) signatures of the Mg-smectites ranged from being comparable to the North American Shale Standard (NASC) to being one-half an order of magnitude depleted relative to NASC. One Mg-smectite collected from layer IIIb, immediately above the “impact/red layer,” was depleted in REE by one order of magnitude relative to NASC, and these levels of REE are comparable to those of smectite and illite/smectite (I/S) formed authigenically in bentonites and K-bentonites, respectively. Thus, the REE data suggest this Mg-smectite in all likelihood was formed authigenically from a glassy precursor. The presence of the low levels of REE of the Mg-smectite in the layer IIIb has no particular significance other than to suggest that this Mg-smectite separate was the least contaminated with illite or apatite having higher REE levels. With better separation, the other Mg-smectites would be expected to have comparably low levels of REE. Given the presence of the Mg-smectite throughout the K/T boundary and in Maastrichtian and Danian marls, the Mg-smectite is thought to be of volcanic origin. However, is not certain whether the Mg-smectite formed from volcanic glass deposited at the K/T boundary or whether it was formed from volcanic glass as young as late Cretaceous.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Alvarez, L. W., Alvarez, W. L., Asaro, F. and Michel, H. V., 1980 Extraterrestrial cause for the Cretaceous/Tertiary boundary extinction Science 208 10951108 10.1126/science.208.4448.1095.CrossRefGoogle Scholar
Alvarez, W., Alvarez, L. W., Asaro, F. and Michel, H. V., 1982 Current status of the impact theory for the terminal Cretaceous extinction GSA Spec. Paper 190 305316.Google Scholar
Awwiller, D. N., (1992) Geochemistry, mineralogy, and burial diagenesis of Wilcox Group shales, Texas Gulf Coast Basin: Ph.D. thesis, University of Texas, Austin, Texas, 114 pp.Google Scholar
Awwiller, D. N. and Mack, L. E., 1991 Diagenetic modification of Sm-Nd model ages in Tertiary sandstones and shales, Texas Gulf Coast Geology 19 311314 10.1130/0091-7613(1991)019<0311:DMOSNM>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Bohor, B. F., Foord, E. E. and Ganapathy, R., 1987b Mag-nesioferrite from the Cretaceous/Tertiary boundary, Car-avaca, Spain Earth and Planet. Sci. Lett. 81 5766 10.1016/0012-821X(86)90100-7.CrossRefGoogle Scholar
Bohor, B. F., Foord, E. E., Modreski, P. J. and Triplehorn, D. M., 1984 Mineralogic evidence for an impact event at the Cretaceous/Tertiary boundary Science 224 867869 10.1126/science.224.4651.867.CrossRefGoogle ScholarPubMed
Bohor, B. F., Modreski, P. J. and Foord, E. E., 1987a Shocked quartz in the Cretaceous/Tertiary boundary clays: Evidence for a global distribution Science 236 705709 10.1126/science.236.4802.705.CrossRefGoogle ScholarPubMed
Christensen, L., Fregeslev, S., Simonsen, A. and Theide, J., 1973 Sedimentology and depositional environments of the lower Danian Fish Clay from Stevns Klint, Denmark GSDBull. 22 193212.Google Scholar
Condie, K. C., 1991 Another look at rare earth elements in shales Geochim. et Cosmochim. Acta 55 25272531 10.1016/0016-7037(91)90370-K.CrossRefGoogle Scholar
Elliott, W. C. and Aronson, J. L., 1987 Alleghanian episode of K-bentonite illitization in the southern Appalachian basin Geology 15 735739 10.1130/0091-7613(1987)15<735:AEOKII>2.0.CO;2.Google Scholar
Elliott, W. C., Aronson, J. L., Matisoff, G. and Gautier, D. L., 1991 The kinetics of the smectite to illite transformation in the Denver basin: Clay mineral, K/Ar dating, and mathematical model results AAPG Bull. 75 436462.Google Scholar
Elliott, W. C., Aronson, J. L. and Millard, H. T. Jr., 1992 The iridium contents of the basaltic tuffs of the Balder Formation, North Sea Geochim. et Cosmochim. Acta 56 29552961 10.1016/0016-7037(92)90373-Q.CrossRefGoogle Scholar
Elliott, W. C., Aronson, J. L., Millard, H. T. Jr. and Gier-lowski-Kordesch, E., 1989 The origin of the clay minerals at the Cretaceous/Tertiary boundary in Denmark GSA Bull. 101 702710 10.1130/0016-7606(1989)101<0702:TOOTCM>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Flanagan, F., 1969 U.S. Geological Survey Standards II. First compilation of data for the new USGS rocks Geochim. et Cosmochim. Acta 33 89120 10.1016/0016-7037(69)90094-5.CrossRefGoogle Scholar
French, B. M., 1984 Impact event at Cretaceous—Tertiary Boundary: A possible site Science 226 353 10.1126/science.226.4672.353-a.CrossRefGoogle ScholarPubMed
Ganapathy, R., 1980 A major meteorite impact on the earth 65 million years ago: Evidence from the Cretaceous-Tertiary boundary clay Science 209 921923 10.1126/science.209.4459.921.CrossRefGoogle Scholar
Govindaraju, K., 1989 Compilation of working values and standard descriptions for 272 standards Geostandards Newsletter 13 2.Google Scholar
Graup, G., 1992 Mineralogic observations from the Stevns Klint and Mimbral K/T sections GSA Abs. with Prog. 24 7 331.Google Scholar
Graup, G., Palme, H. and Spettle, B., 1992 Trace element stratification in the Stevns Klint Cretaceous/Tertiary boundary layers [abs.] Lunar and Planetary Science XXIII Houston Lunar Planetary Institute 445446.Google Scholar
Gravesen, P., (1983) Maastrichtien/Danien-Graensen i Karlstrup Kalkgrav (Ostsjaelland): Dansk. Geol. Foren Arsskrift, 4758.Google Scholar
Gromet, L. P., Dymek, R. F., Haskin, L. A. and Korotev, R. L., 1984 The “North American shale composite”: Its compilation, major and trace element characteristics Geochim. et Cosmochim. Acta 48 24692482 10.1016/0016-7037(84)90298-9.CrossRefGoogle Scholar
Hakanson, E., and Hansen, H. J., (1979) Guide to Maastrich-tian and Danian Boundary strata in Jylland.: in Cretaceous– Tertiary Boundary Events Symposium, I Proceedings Addendum, Birkelund, T., and Bromely, R. G., eds., University of Copenhagen, 171188.Google Scholar
Hallam, A., 1987 End-Cretaceous mass extinction event: Argument for terrestrial causation Science 238 12371242 10.1126/science.238.4831.1237.CrossRefGoogle ScholarPubMed
Hildebrand, A. R., Kring, D. A., Penfield, G. T., Pilkington, M., Camargo, Z. A., Jacobson, S. B. and Boynton, W. V., 1991 Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico Geology 19 867871 10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Hultberg, S. U., 1987 Palynological evidence for a diach-ronous low-salinity event in the C-T boundary clay at Stevns Klint, Denmark J. of Micropaleontology 6 3540 10.1144/jm.6.2.35.CrossRefGoogle Scholar
Ingamells, C. O., 1970 Lithium metaborate flux in silicate mineral analysis Analytical Chim. Act. 52 323334 10.1016/S0003-2670(01)80963-6.CrossRefGoogle Scholar
Izett, G.A., (1987) The K/T boundary interval, Raton Basin, Colorado and New Mexico, and its content of shock metamorphosed minerals—Implications concerning the K/T boundary impact theory: USGS Open File Report 87–606, 58 pp.CrossRefGoogle Scholar
Izett, G. A., (1990) The Cretaceous/Tertiary boundary interval, Raton Basin, Colorado and New Mexico, and its content of shocked metamorphosed minerals, evidence relevant to the Cretaceous/Tertiary impact extinction theory: GSA Special Paper 249, 100 pp.Google Scholar
Izett, G. A., 1991 Tektites in the Cretaceous/Tertiary boundary rocks on Haiti and their bearing on the Alvarez impact extinction hypothesis J. of Geophys. Res. E 96 2087920905 10.1029/91JE02249.CrossRefGoogle Scholar
Izett, G. A., Dalrymple, G. B. and Snee, L. W., 1991 40Ar/ 39Ar age of Cretaceous—Tertiary boundary tektites from Haiti Science 252 15391542 10.1126/science.252.5012.1539.CrossRefGoogle ScholarPubMed
Izett, G. A., Maurrasse, F. J.-M. R., Lichte, F. E., Meeker, G. P., and Bates, R., (1990) Tektites in Cretaceous-Tertiary boundary rocks on Haiti: USGS Open File Report 90–635, 31 pp.Google Scholar
Jackson, M. L., (1979) Soil Chemical Analysis—Advanced Course: M. L. Jackson, ed., pub., Madison, Wisconsin, 895 pp.Google Scholar
Kastner, M., Asaro, F., Michel, H. V., Alvarez, W. and Alvarez, L. W., 1984 The precursor of the Cretaceous/Tertiary boundary clays at Stevns Klint and DSDP Hole 465A Science 226 137143 10.1126/science.226.4671.137.CrossRefGoogle ScholarPubMed
Kring, D. A. and Boyton, W. V., 1991 Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti Geochim. et Cosmochim. Acta 55 17371742 10.1016/0016-7037(91)90143-S.CrossRefGoogle Scholar
Kunk, M., Izett, G. A., Haugerud, R. A. and Sutter, J. F., 1989 40Ar-39 Ar dating of the Manson Impact structure: a Cretaceous-Tertiary boundary candidate impact structure Science 244 15651568 10.1126/science.244.4912.1565.CrossRefGoogle Scholar
Kyte, F. T. and Smit, J., 1986 Regional variations in spinel compositions: An important key to the Cretaceous/Tertiary boundary event Geology 14 485487 10.1130/0091-7613(1986)14<485:RVISCA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Kyte, F. T., Zhou, Z. and Wasson, J. T., 1980 Siderophile-enriched sediments from the Cretaceous-Tertiary boundary Nature 288 651655 10.1038/288651a0.CrossRefGoogle Scholar
Malm, O., Christensen, O. B., Furnes, H., Lovlie, R., Ruse-latten, H., Lorange Ostby, K., et al. , Spencer, A. M., 1984 et al. , The lower Tertiary Balder Formation: An organogenic and tuffaceous deposit in the North Sea region Petroleum Geology of the North Sea Margin London Graham and Trotman 149170 10.1007/978-94-009-5626-1_11.CrossRefGoogle Scholar
Malmgren, B., 1982 Biostratigraphy of planktic foraminif-era from Maastrichtian white chalk of Sweden Geologiska Foreningens i Stockholm Forhandlingar 103 357375 10.1080/11035898209453707.CrossRefGoogle Scholar
Moore, D. M. and Reynolds, R. C. Jr., 1989 X-ray diffraction and the identification and analysis of clay minerals New York Oxford University Press.Google Scholar
Ohr, M., Halliday, A. N and Peacor, D. L., 1991 Sr and Nd isotopic evidence for punctuated clay diagenesis, Texas Gulf Coast Earth and Planet. Sci. Lett. 105 110126 10.1016/0012-821X(91)90124-Z.CrossRefGoogle Scholar
Penfield, G. T., and Carmargo, Z. A., (1981) Definition of a major igneous zone in the central Yucatan platform with aeromagnetics and gravity: in Technical Program, Abstracts and Biographies, Society of Exploration Geophysicists 51st annual international meeting, Los Angeles, Society of Exploration Geophysicists, 37.Google Scholar
Perrault, G., Hebert, P. and Kubat, V., 1984 Un nouveau materiau de reference de gabbro a pyroxene et olivine du Mont-Royal, P. Q., Canada Can. J. of Spectrosc. 19 6367.Google Scholar
Pope, K. O., Ocampo, A. C. and Duller, C. E., 1991 Mexican site for K/T crater? Nature 351 105 10.1038/351105a0.CrossRefGoogle Scholar
Premovic, P. E., Pavlovic, N. Z., Pavlovic, M. S. and Nikolic, N. D., 1993 Physiochemical conditions of sedimentation of the Fish Clay from Stevns Klint, Denmark, and its de-trital nature: Vanadium and other supportive evidence Geochim. et Cosmochim. Acta 57 14331446 10.1016/0016-7037(93)90004-G.CrossRefGoogle Scholar
Rampino, R. and Reynolds, R. C. Jr., 1983 Clay mineralogy of the Cretaceous/Tertiary boundary clay Science 219 495498 10.1126/science.219.4584.495.CrossRefGoogle ScholarPubMed
Robert, C. and Chamley, H., 1990 Paleoenvironmental significance of clay mineral associations at the Cretaceous-Tertiary passage Palaeogeography, Palaeoclimatology, Palaeoecology 79 205219 10.1016/0031-0182(90)90018-3.CrossRefGoogle Scholar
Robin, E., Boclet, D., Bonté, P., Froget, L., Jéhanno, C. and Rocchia, R., 1992a The stratigraphie distribution of Ni-spinels in Cretaceous-Tertiary boundary rocks at El Kef (Tunisia), Caravaca (Spain), and Hole 761 C (Leg 122) Earth and Planet. Sci. Lett. 137 715722.Google Scholar
Robin, E., Bonté, P., Froget, L., Jéhanno, C. and Rocchia, R., 1992b Formation of spinels in cosmic objects during atmospheric entry: A clue to Cretaceous-Tertiary boundary event Earth and Planet. Sci. Lett. 108 181190 10.1016/0012-821X(92)90021-M.CrossRefGoogle Scholar
Schmitz, B., 1985 Metal precipitation in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark Geochim. et Cosmochim. Acta 49 23612370 10.1016/0016-7037(85)90236-4.CrossRefGoogle Scholar
Schmitz, B., 1988 Origin of microlayering in worldwide distributed Ir-rich marine Cretaceous/Tertiary boundary clays Geology 16 10681072 10.1130/0091-7613(1988)016<1068:OOMIWD>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Schmitz, B., 1990 Reply on the origin of microlayering in worldwide distributed Ir-rich marine Cretaceous/Tertiary boundary clays Geology 18 8792 10.1130/0091-7613(1990)018<0087:CAROOO>2.3.CO;2.Google Scholar
Schmitz, B., Andersson, P. and Dahl, J., 1988 Iridium, sulfur isotoptes and rare earth elements in the Cretaceous/ Tertiary boundary clay at Stevns Klint, Denmark Geochim. et Cosmochim. Acta 52 229236 10.1016/0016-7037(88)90072-5.CrossRefGoogle Scholar
Sigurdsson, H., D’Hondt, S., Arthur, M. A., Bralower, T. J., Zachos, J. C., van Fossen, M. and Hannell, J. E. T., 1991 Glass from the Cretaceous/Tertiary boundary in Haiti Nature 349 472487 10.1038/349482a0.CrossRefGoogle Scholar
Smit, J. and Kyte, F. T., 1984 Siderophile-rich spheroids from the Cretaceous/Tertiary boundary in Umbria, Italy Nature 310 403405 10.1038/310403a0.CrossRefGoogle Scholar
Smit, J., Montanari, A., Swinburne, N H M Alvarez, W., Hildebrand, A. R., Margolis, S. V., Clayes, P., Lowrie, W. and Asaro, F., 1992 Tektite-bearing deep-water clastic unit at the Cretaceous/Tertiary boundary in northeastern Mexico Geology 20 99103 10.1130/0091-7613(1992)020<0099:TBDWCU>2.3.CO;2.2.3.CO;2>CrossRefGoogle ScholarPubMed
Taylor, S. R., McClennan, S. M., Gschneidner, K. A. and Eyring, L., 1988 The significance of the rare earths in geochemistry and cosmochemistry Handbook on the Chemistry and Physics of Rare Earths North Holland Elsevier 485578.Google Scholar
Tredoux, M., De Wit, M. J., Hart, R. J., Lindsay, N. M., Verhagen, B. and Sellschop, P. F., 1989 Chemostratig-raphy across the Cretaceous/Tertiary boundary and critical assessment of the iridium anomaly J. of Geol. 97 585605 10.1086/629336.CrossRefGoogle Scholar
Varekamp, J. C. and Thomas, E., 1982 Chalcophile elements in Cretaceous/Tertiary boundary sediments: Terrestrial or extraterrestrial? GSA Special Paper 190 461467.Google Scholar
Wolbach, W. S., Gilmore, I., Anders, E. and Orth, C., 1987 Global fire at Cretaceous-Tertiary boundary Nature 334 665669 10.1038/334665a0.CrossRefGoogle Scholar
Zielinski, R. A., 1983 The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colorado, U.S.A. Chem. Geol. 35 185204 10.1016/0009-2541(82)90001-8.CrossRefGoogle Scholar
Zoller, W. H., Parrington, J. R. and Phelan Kotra, J. M., 1983 Iridium enrichment in airborne particles from Kil-uea volcano Science 222 11181121 10.1126/science.222.4628.1118.CrossRefGoogle ScholarPubMed