Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T12:09:38.708Z Has data issue: false hasContentIssue false

Origin of Magnesium Clays from the Amargosa Desert, Nevada

Published online by Cambridge University Press:  02 April 2024

Hani N. Khoury
Affiliation:
Department of Geology and Mineralogy, University of Jordan, Amman, Jordan
Dennis D. Eberl
Affiliation:
U.S. Geological Survey, Denver Federal Center, Denver, Colorado 80225
Blair F. Jones
Affiliation:
U.S. Geological Survey, National Center, Reston, Virginia 22092
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Deposits of sepiolite, trioctahedral smectite (mixed-layer kerolite/stevensite), calcite, and dolomite, found in the Amargosa Flat and Ash Meadows areas of the Amargosa Desert were formed by precipitation from nonsaline solutions. This mode of origin is indicated by crystal growth patterns, by the low Al content for the deposits, and by the absence of volcanoclastic textures. Evidence for low salinity is found in the isotopic compositions for the minerals, in the lack of abundant soluble salts in the deposits, and in the crystal habits of the dolomite. In addition, calculations show that modern spring water in the area can precipitate sepiolite, dolomite, and calcite following only minor evaporative concentration and equilibration with atmospheric CO2. However, precipitation of mixed-layer kerolite/stevensite may require a more saline environment. Mineral precipitation probably occurred during a pluvial period in shallow lakes or swamps fed by spring water from Paleozoic carbonate aquifers.

Резюме

Резюме

Резюме—Отложения сепиолита, трехоктаэдрического смектита (смешанно-слойного керолита/стевенсита), кальцита, и доломита, найденные в районах Амаргоской низменности и пепловых лугов Амаргоской пустыни, были образованы путем осаждения из несоленых растворов. На этот способ происхождения указывают структуры роста кристаллов, низкое содержание Аl в отло-жениях ш отсутствие вулканокластических текстур. Свидетельством низкой солености являются изотопные составы минералов, отсутствие обильных растворимых солей в отложениях и кристал-лические черты доломита. Кроме того, расчеты показывают, что современная источниковая вода в районе может осаждать сепиолит, доломит и кальцит после незначительной испарительной кон-центрации и равновесия с атмосферическим CO2. Однако, осаждение смешанно-слойного керо-лита/стевенсита может потребовать более соленой среды. Минеральные осаждения, вероятно, выступили в течение плювиального периода в мелких озерах или топях, питаемых источниковой водой из палеозойских карбонатных водоносных пластов. [Е.С.]

Resümee

Resümee

Ablagerungen von Sepiolith, trioktaedrischem Smektit (Wechsellagerung Kerolit/Stevensit), Calcit, und Dolomit, die in den Gebieten Amargosa Flat und Ash Meadows der Amargosa Wüste gefunden werden, bildeten sich durch Ausfallung aus nicht-salinen Lösungen. Diese Entstehungsart ergibt sich aus der Art des Kristallwachstums, dem niedrigen Al-Gehalt der Ablagerungen und durch das Fehlen von vulkanoklastischen Strukturen. Der Beweis für eine niedrige Salinität ergibt sich aus den einheitlichen Zusammensetzungen der Minerale, aus dem Fehlen überschüssiger löslicher Salze in den Ablagerungen und aus den Arten des Kristallhabitus von Dolomit. Außerdem zeigen Berechnungen, daß aus rezentem Quellwasser dieses Gebietes Sepiolith, Dolomit und Calcit ausfallen kann, was nur von einer geringen Konzentrierung durch Evaporation und von der Gleichgewichtseinstellung mit dem CO2 der Luft abhängt. Die Ausfallung der Wechsellagerung Kerolit/Stevensit könnte jedoch höher saline Bedingungen erfordern. Diese Mineralausfällung geschah wahrscheinlich während einer pluvialen Periode in seichten Seen odor Mooren, die von Quellwasser aus paläozoischen, karbonathaltigen wasserführenden Schichten gespeist wurden. [U.W.]

Résumé

Résumé

Des dépôts de sépiolite, de smectite trioctaèdre (kérolite/stevensite à couches mélangées), de calcite, et de dolomite, trouvés dans les régions de l'Amargosa Fiat et d'Ash Meadows du désert d'Amargosa ont été formés par la précipitation de solutions non-salines. Ce mode d'origine est indiqué par les dessins de croissance cristallographique, par le bas contenu en Al des dépôts, et par l'absence de textures volcanoclastiques. L’évidence pour la basse salinité est trouvée dans les compositions isotopiques pour les minéraux, dans le manque d'abondants sels solubles dans les dépôts, et dans les habitudes cristallographiques de la dolomite. De plus, des calculs montrent que de l'eau de source moderne dans la région peut précipiter la sépiolite, la dolomite, et la calcite suivant une concentration evaporative mineure et l’équilibration avec du CO2 atmosphérique. La précipitation de kérolite/stevensite à couches mélangées peut cependant exiger un environement plus salin. La précipitation des minéraux s'est probablement passée pendant une période pluviale dans des lacs peu profonds ou dans des marais nourris d'eau de source provenant des aquifères carbonates paléozoiques. [D.J.]

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

References

Bathurst, R. G. C., 1975 Carbonate Sediments and Their Diagenesis. 2nd Amsterdam Elsevier.Google Scholar
Blankennagel, R. K. and Weir, J. E. Jr. (1973) Geohydrology of the eastern part of Pahute Mesa, Nevada Test Site, Nye County, Nevada: U.S. Geol. Surv. Prof. Pap. 712–B, 35 pp.Google Scholar
Burchfiel, B. C. (1966) Reconnaissance geologic map of the Lathrop Wells 15-Minute Quadrangle, Nye County, Nevada. Lat. 36°30′ to 36°45′, long. 116°15′ to 116°30′. Scale 1:62,500: U.S. Geol. Surv. Geol. Invest. I–474.Google Scholar
Clayton, R. N., Jones, B. F. and Berner, R. A., 1968 Isotopic studies of dolomite formation under sedimentary conditions Geochim. Cosmochim. Act. 32 415432.CrossRefGoogle Scholar
Denny, C. S. and Drews, H. (1965) Geology of the Ash Meadows Quadrangle, Nevada-California: U.S. Geol. Surv. Bull. 1181–L, 56 pp.Google Scholar
Dudley, W. W. and Larson, J. D. (1976) Effect of irrigation pumping on desert pupfish habitats in Ash Meadows, Nye County, Nevada: U.S. Geol. Surv. Prof. Pap. 927, 52 pp.Google Scholar
Eberl, D. D., Jones, B. F. and Khoury, H. N., 1982 Mixedlayer kerolite/stevensite from the Amargosa Desert, Nevada Clays & Clay Minerals 30 321326.CrossRefGoogle Scholar
Folk, R. L. and Land, L. S., 1975 Mg/Ca ratio and salinity: two controls over crystallization of dolomite Amer. Assoc. Petrol. Geol. Bull. 53 6068.Google Scholar
Folk, R. L. and Siedlecka, A., 1974 The schizohaline environment Sed. Geolog. 11 115.CrossRefGoogle Scholar
Fritz, P. and Smith, D. G. W., 1970 The isotopic composition of secondary dolomites Geochim. Cosmochim. Act. 34 11611173.CrossRefGoogle Scholar
Gaines, A. M., 1980 Dolomitization kinetics: recent experimental evidence: in Concepts and Models of Dolomitization SEPMSpec. Pub. 28 8186.Google Scholar
Garrels, R. M. and Christ, C. L., 1965 Solutions, Minerals and Equilibria. San Francisco Freeman, Cooper and Company.Google Scholar
Gulson, B. L. and Loverings, J. F., 1968 Rock analysis using the electron probe Geochim. Cosmochim. Act. 32 119.CrossRefGoogle Scholar
Giiven, N. and Carney, L. L., 1979 The hydrothermal transformation of sepiolite to stevensite and the effect of added chlorides and hydroxides Clays & Clay Mineral. 27 253260.CrossRefGoogle Scholar
Khoury, H. N., 1979 Mineralogy and chemistry of some unusual clay deposits in the Amargosa Desert, southern Nevada Illinois Ph.D. thesis, University Illinois, Urbana.Google Scholar
Khoury, H. N. and Eberl, D. D., 1979 Bubble-wall shards altered to montmorillonite Clays & Clay Mineral. 27 291292.CrossRefGoogle Scholar
Khoury, H.N. and Eberl, D., 1981 Montmorillonite from the Amargosa Desert, southern Nevada, U.S.A. N. Jb. Miner. Abh. 141 134141.Google Scholar
Maxey, G. B. and Kaufmann, R. F., 1972 Hydrogeologie study of the south part of the Amargosa Desert, Nevada and California Industrial Mineral Ventures Company Internal Rept..Google Scholar
Naff, R. L., 1973 Hydrogeology of the southern part of Amargosa Desert in Nevada Reno M.S. thesis, Univ. Nevada.Google Scholar
Naff, R. L., Maxey, G. B., and Kaufmann, R. F. (1974) Interbasin ground water flow in southern Nevada: Nev. Bur. Mines Rept. 20, 28 pp.Google Scholar
Papke, K. G. (1970) Montmorillonite, bentonite, and fuller’s earth deposits in Nevada: Nev. Bur. Mines Bull. 76, 43 pp.Google Scholar
Papke, K. G., 1972 A sepiolite-rich playa deposit in southern Nevada Clays & Clay Mineral. 20 211215.CrossRefGoogle Scholar
Post, J. L., 1978 Sepiolite deposits of the Las Vegas, Nevada area Clays & Clay Mineral. 26 5864.CrossRefGoogle Scholar
Regis, A. J. (1978) Mineralogy, physical, and exchangeable chemistry properties of bentonites from the western United States, exclusive of Montana and Wyoming: U.S. Bur. Land Management Tech. Not. 315, 35 pp.Google Scholar
Reynolds, R. C. and Hower, J., 1970 The nature of interlayering in mixed-layer illite-montmorillonites Clays & Clay Mineral. 18 2536.CrossRefGoogle Scholar
Savin, S. M., 1970 The oxygen and hydrogen isotope geochemistry of ocean sediments and shales Geochim. Cosmochim. Act. 34 4364.CrossRefGoogle Scholar
Siffert, B. (1962) Quelques réactions de la silice en solution: La formation des argiles: Mém. Serv. Carte Géol. AlsaceLorrain. 21, 100 pp.Google Scholar
Smith, G. I., 1976 Origin of lithium and other components in the Searles Lake evaporites, California Lithium Resources and Requirements by the Year2000 1005 92103.Google Scholar
Tardy, Y. and Garrels, R. M., 1974 A method of estimating the Gibbs energies of formation of layer silicates Geochim. Cosmochim. Act. 38 11011116.CrossRefGoogle Scholar
Walker, G. E. and Eakin, T. E. (1963) Geology and ground water of Amargosa Desert, Nevada-California: Nevada Dept. Conserv. Nat. Resour., Ground-Water Resour., Recon. Ser., Rept. 14, 45 pp.Google Scholar
Weaver, C. E., 1975 Construction of limpid dolomite Geolog. 3 425428.Google Scholar
Winograd, I. J. and Friedman, I., 1972 Deuterium as a tracer of regional ground-water flow, southern Great Basin, Nevada-California Geol. Soc. Amer. Bull. 83 36913708.CrossRefGoogle Scholar
Winograd, I. J., Pearson, F. J. Jr., 1976 Major carbon 14 anomaly in a regional carbonate aquifer: Possible evidence for megascale channeling, south central Great Basin Water Resources Res. 12 11251143.CrossRefGoogle Scholar
Winograd, I. J. and Thordarson, W. (1975) Hydrogeologie and hydrochemical framework, South-central Great Basin, Nevada-California, with special reference to the Nevada Test Site: U.S. Geol. Surv. Prof. Pap. 72–C, 126 pp.Google Scholar