Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T13:01:05.789Z Has data issue: false hasContentIssue false

Origin and Depositional Environment of Palygorskite and Sepiolite from the Ypresian Phosphatic Series, Southwestern Tunisia

Published online by Cambridge University Press:  01 January 2024

A. Tlili*
Affiliation:
Earth Sciences Department, Sciences Faculty of Sfax, Route de Soukra, Km 3.5, BP 802, 3038 Sfax, Tunisia
M. Felhi
Affiliation:
Earth Sciences Department, Sciences Faculty of Sfax, Route de Soukra, Km 3.5, BP 802, 3038 Sfax, Tunisia
M. Montacer
Affiliation:
Earth Sciences Department, Sciences Faculty of Sfax, Route de Soukra, Km 3.5, BP 802, 3038 Sfax, Tunisia
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Ypresian phosphatic series of the Gafsa-Metlaoui basin, southwestern Tunisia, is represented by an alternation of phosphatic levels and interbedded facies, which are composed of marly clay and silica-rich rocks. The present work aimed to clarify the genesis of palygorskite and sepiolite of the interbedded facies and to understand the depositional environment of the phosphatic series. The interbedded facies of the Stah and Jellabia mines were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Energy Dispersive X-ray microanalysis (EDX) of individual constituents and their aggregates. The data obtained indicate that samples are made up of francolite, calcite, dolomite, quartz, feldspars, and clay minerals; the latter consist of palygorskite-sepiolite minerals associated with smectite. Observations by SEM revealed the occurrence of palygorskite and sepiolite as fine and filamentous fibers with thread-like facies and coating dolomite, calcite, and a marly matrix. Such features can be considered as textural evidence of authigenic palygorskite-sepiolite. At the bottom of the Stah section, SEM observations revealed that the fine fibers are more abundant within silica-rich rocks. Silica is commonly available due to bacterial activity saturating its environment with the silicic acid required for the formation of palygorskite-sepiolite. In the interbedded facies of the Jellabia section, the moderate fibrous clay content and the presence of well crystallized dolomite revealed that the shallow-marine water was characterized by high-Mg and low-Si activities.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2010

References

Arfaoui, A. and Montacer, M., 2007 Geochemical characterization given by Rock-Eval parameters and N-alkanes distribution on Ypresian organic matter at Jebel Chaker, Tunisia Resource Geology 57.1 3746 10.1111/j.1751-3928.2006.00003.x.CrossRefGoogle Scholar
Baioumy, H.M. Tada, R. and Gharaie, M.H.M., 2007 Geochemistry of late Cretaceous phosphorites in Egypt: Implication for their genesis and diagenesis Journal of African Earth Sciences 49 1228 10.1016/j.jafrearsci.2007.05.003.CrossRefGoogle Scholar
Belayouni, H., 1983 Etude de la matière organique dans la série phosphatée du bassin de Gafsa Metlaoui (Tunisie) Application à la compréhension des mécanismes de la phosphatogenèse Tunisia Tunis II University.Google Scholar
Bernoullia, D. and Gunzenhauser, B., 2001 A dolomitized diatomite in an Oligocene—Miocene deep-sea fan succession, Gonfolite Lombarda Group, Northern Italy Sedimentary Geology 139 7191 10.1016/S0037-0738(00)00159-7.CrossRefGoogle Scholar
Bidle, K.D. and Azam, F., 1999 Accelerated dissolution of diatom silica by marine bacterial assemblages Nature 397 508512 10.1038/17351.CrossRefGoogle Scholar
Birsoy, R., 2002 Formation of sepiolite-palygorskite and related minerals from solution Clays and Clay Minerals 50 736745 10.1346/000986002762090263.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 197248.CrossRefGoogle Scholar
Burollet, P.F., 1956 Contribution à l’étude stratigraphique de la Tunisie centrale Annale Mines et Géologie Tunisie 18 350.Google Scholar
Burollet, PF JL, 1980 Paléocène et Eocène en Tunisie: Pétrole et Phosphate Document de Bureau de Recherches Géologiques et Minières, Orléans 24 203216.Google Scholar
Caillère, S. and Hénin, S., 1948 Occurrences of sepiolite in the Lizard serpentines Nature 63 962.Google Scholar
Castany, G. (1951) Etude géologique de l’Atlas Tunisien Oriental. Annale Mines et Géologie Tunisie, 8, 632 pp.Google Scholar
Chaâbani, F., 1995 Dynamique de la partie orientale du bassin de Gafsa au crétacé et au paléogène Tunisia Tunis II University.Google Scholar
Chahi, A., 1996 Les minéraux argileux des gisements de phosphorites des Ganntour et de stévensite du Jebel Morocco Marrakech University.Google Scholar
Chahi, A. Duplay, J. and Lucas, J., 1993 Analyses of palygorskites and associated clays from the Jbel Rhassoul (Morocco); chemical characteristics and origin of formation Clays and Clay Minerals 41 401411 10.1346/CCMN.1993.0410401.CrossRefGoogle Scholar
Chamley, H., 1989 Clay Sedimentology Berlin Springer Verlag 7594.CrossRefGoogle Scholar
Daoudi, L., 2004 Palygorskite in the uppermost Cretaceous—Eocene rocks from Marrakech High Atlas, Morocco Journal of African Earth Sciences 39 353358 10.1016/j.jafrearsci.2004.07.033.CrossRefGoogle Scholar
Disnar, JR L Start, P. Farjanel, G. and Fikri, A., 1996 Organic matter sedimentation in the northeast of the Paris Basin: Consequences for the deposition of the lower Toarcien black shales Chemical Geology 131 1535 10.1016/0009-2541(96)00021-6.CrossRefGoogle Scholar
Estéoule-Choux, J., Singer, A. Galán, E., 1984 Palygorskite in the Tertiary deposits of the Armorican Massif Palygorskite-Sepiolite: Occurrences, Genesis and Uses Amsterdam Elsevier 7585.Google Scholar
Fakhfakh, E. Hajjaji, W. Medhioub, M. Rocha, F. López-Galindo, A. Setti, M. Kooli, F. Zargouni, F. and Jamoussi, F., 2007 Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks Applied Clay Science 35 228237 10.1016/j.clay.2006.09.006.CrossRefGoogle Scholar
Felhi, M., 2010 Les niveaux intercalaires de la série yprésienne du bassin Gafsa-Métlaoui: Apports de la mineralogie des argiles et de la géochimie de la matière organique résiduelle à la reconstitution paléoenvironnementale Tunisia Sfax University.Google Scholar
Felhi, M. Tlili, A. Gaied, M.E. and Montacer, M., 2008 Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia Applied Clay Science 39 208217 10.1016/j.clay.2007.06.004.CrossRefGoogle Scholar
Felhi, M. Tlili, A. and Montacer, M., 2008 Geochemistry, petrographic and spectroscopic studies of organic matter of clay associated kerogen of Ypresian series: Gafsa-Metlaoui phosphatic basin, Tunisia Resource Geology 59 428436 10.1111/j.1751-3928.2008.00075.x.CrossRefGoogle Scholar
Frost, R.L. Locos, O. Ruan, H. and Kloprogge, J.T., 2001 Near-infrared and mid-infrared spectroscopic study of sepiolite and Palygorskites Vibrational Spectroscopy 27 113 10.1016/S0924-2031(01)00110-2.CrossRefGoogle Scholar
García-Romero, E. Suárez, M. Santarén, J. and Alvarez, A., 2007 Crystallochemical characterization of the palygors-kite and sepiolite from the Allou Kagne deposits, Senegal Clays and Clay Minerals 55 606617 10.1346/CCMN.2007.0550608.CrossRefGoogle Scholar
Henchiri, M., 2007 Sedimentation, depositional environment and diagenesis of Eocene biosiliceous deposits in Gafsa basin (southern Tunisia) Journal of African Earth Sciences 49 187200 10.1016/j.jafrearsci.2007.09.001.CrossRefGoogle Scholar
Henchiri, M. and Slim-Shimi, N., 2006 Silicification of sulphate evaporites and their carbonate replacements in Eocene marine sediments, Tunisia: two diagenetic trends Sedimentology 53 11351159 10.1111/j.1365-3091.2006.00806.x.CrossRefGoogle Scholar
Isphording, W.C., 1973 Discussion of the occurrence and origin of sedimentary palygorskite-sepiolite Clays and Clay Minerals 21 391401 10.1346/CCMN.1973.0210515.CrossRefGoogle Scholar
Isphording, W.C., Singer, A. Galán, E., 1984 The clays of Yucatan, Mexico: a contrast in genesis Palygorskite-Sepiolite Occurrences, Genesis and Uses Amsterdam Elsevier 5973.Google Scholar
Jamoussi, F. Ben Aboud, A. and Lopez Galindo, A., 2003 Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits Clay Minerals 38 187199 10.1180/0009855033820088.CrossRefGoogle Scholar
Jamoussi, F. Bédir, M. Boukadi, N. Kharbachi, S. Zargouni, Z. López-Galindo, A. and Paquet, H., 2003 Répartition des minéraux argileux et contrle tectonoeustatique dans les bassins de la marge Tunisienne. Clay mineralogical distribution and tectono-eustatic control in the Tunisian margin basins Compte Rendus Geoscience 335 175183 10.1016/S1631-0713(03)00014-2.CrossRefGoogle Scholar
Jones, B.F. Galán, E. and Bailey, S.W., 1988 Sepiolite and palygorskite Hydrous Phyllosilicates (exclusive of micas) Washington, D.C. Mineralogical Society of America 631674 10.1515/9781501508998-021.CrossRefGoogle Scholar
Krekeler, M.P.S. Guggenheim, S. and Rakovan, J., 2004 A microtexture study of palygorskite-rich sediments from the Hawthorne Formation, Southern Georgia by transmission electron microscopy and atomic force microscopy Clays and Clay Minerals 52 263274 10.1346/CCMN.2004.0520302.CrossRefGoogle Scholar
Krekeler, M.P.S. Morton, J. Lepp, J. Tselepis, C.M. Samsonov, M. and Kearns, L.E., 2008 Mineralogical and geochemical investigations of clay-rich mine tailings from a closed phosphate mine, Bartow, Florida, USA Environmental Geology 55 123147 10.1007/s00254-007-0971-8.CrossRefGoogle Scholar
Lancelet, Y., 1973 Chert and silica diagenesis in sediments from the central Pacific Initial Reports of the Deep Sea Drilling Project 17 377405.Google Scholar
Millot, G., 1970 Geology of Clays New York Springer-Verlag 10.1007/978-3-662-41609-9.CrossRefGoogle Scholar
Muttoni, G. and Kent, D., 2007 Widespread formation of chert during the early Eocene Climate Optimum Palaeogeography Palaeoclimatology Palaeoecology 253 348362 10.1016/j.palaeo.2007.06.008.CrossRefGoogle Scholar
Pletsch, T., Kroon, D. Norris, R.D. Klaus, A., 2001 Palaeoenvironmental implications of palygorskite clays in Eocene deep-water from the Western Central Atlantic Western North Atlantic Paleogene and Cretaceous Palaeooceanography London Geological Society 308317.Google Scholar
Pluth, J.J. Smith, J.V. Pushcharovsky, D.Y. Semenov, E.I. Bram, A. Riekel, C. Weber, H.P. and Broach, R.W., 1997 Third-generation synchrotron X-ray diffraction of 6 um crystal of raite, ≈ Na3Mn3Ti0.25Si8O20(OH)2.10H2O, opens up new chemistry and physics of low temperature minerals Proceedings of the National Academy of Sciences, USA 94 1226312267 10.1073/pnas.94.23.12263.CrossRefGoogle Scholar
Sassi, S., 1974 La sédimentation phosphatée au Paléocène dans le Sud et dans le Centre Ouest de la Tunisie France Paris Sud Orsay University.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geological Survey Professional Paper, vol. 391-C. 31 pp.Google Scholar
Sigg, L. Stumm, W. and Behra, P., 1992 Chimie des milieux aquatiques: chimie des eaux naturelles et des interfaces dans l’environnement Paris Masson.Google Scholar
Singer, A., 1979 Palygorskite in sediments: detrital, diagenetic or neoformed — a critical review Geologische Rundschau 68 9961008 10.1007/BF02274683.CrossRefGoogle Scholar
Singer, A., Singer, A. Galán, E., 1984 Pedogenic palygorskite in the arid environment Palygorskite-Sepiolite: Occurrences, Genesis and Uses Amsterdam Elsevier 169176.Google Scholar
Singer, A. and Norrish, K., 1974 Pedogenic palygorskite occurrences in Australia American Mineralogist 59 508517.Google Scholar
Velde, B., 1985 Clay Minerals — A Physico-chemical Explanation of their Occurrences Amsterdam Elsevier 225256.Google Scholar
Visse, L., 1952 Genèse des gîtes phosphatée du Sud-Est Algéro-Tunisien XXXème Congrès de Géologie, Algerie 1 2753.Google Scholar
Weaver, C.E. and Beck, K.C., 1977 editors () Miocene of the S.E. United States: A model for chemical sedimentation in peri-marine environment. Developments in Sedimentology, 22. Elsevier, Amsterdam, pp. 225256.Google Scholar
Yalcin, H. and Bozkaya, O., 1995 Sepiolite-palygorskite from the Hekimhan region (Turkey) Clays and Clay Minerals 43 705717 10.1346/CCMN.1995.0430607.CrossRefGoogle Scholar
Zaaboub, N. Abdeljaouad, S. and Lopez Galindo, A., 2005 Origin of fibrous clays in Tunisia Paleogene continental deposits Journal of African Earth Sciences 43 491504 10.1016/j.jafrearsci.2005.08.013.CrossRefGoogle Scholar