Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T12:46:50.928Z Has data issue: false hasContentIssue false

The Orientation of the Principal Axes System of the Electric Field Gradient in Fe (III) Vermiculite Determined by Mössbauer Spectroscopy

Published online by Cambridge University Press:  01 July 2024

J. A. Helsen
Affiliation:
Universiteit te Leuven, Laboratorium voor Analytische Scheikunde & Instrumentele Analyse, de Croylaan 2, B-3030 Heverlee, Belgium
M. Van Deyck
Affiliation:
Laboratorium your Kernen Stralingsfysika, Universiteit te Leuven, Celestijnenlaan 200 F, B-3030, Heverlee, Belgium
G. Langouche
Affiliation:
Laboratorium your Kernen Stralingsfysika, Universiteit te Leuven, Celestijnenlaan 200 F, B-3030, Heverlee, Belgium
R. Coussement
Affiliation:
Laboratorium your Kernen Stralingsfysika, Universiteit te Leuven, Celestijnenlaan 200 F, B-3030, Heverlee, Belgium
M. Van Rossum
Affiliation:
Laboratorium your Kernen Stralingsfysika, Universiteit te Leuven, Celestijnenlaan 200 F, B-3030, Heverlee, Belgium
K. P. Schmidt
Affiliation:
Laboratorium your Kernen Stralingsfysika, Universiteit te Leuven, Celestijnenlaan 200 F, B-3030, Heverlee, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1975, The Clay Minerals Society

Footnotes

*

Aspirant N.F.W.O., Belgium

References

Brindley, G. W., (1970) Organic complexes of silicates Réunion Hispano-Belga de Minerales de la Ar cilla, Proc. C.S.I.C 5566.Google Scholar
Helsen, J. Lafaut, J. P. and Schmidt, K., (1970) Applications of Mössbauer Spectroscopy to Fe(II)- and Fe(III)-montmorillonite Réunion Hispano-Belga de Minerales de la Arcilla, Proc. C.S.I.C 173178.Google Scholar
Helsen, J. Schmidt, C Th Coussement, R. and Langouche, G., (1972) Détermination par effet Mössbauer du coefficient de ‘self-diffusion’ dans une ver-miculite. Premiers résultats Bull, Groupe franç. Argiles XXIV 165170.CrossRefGoogle Scholar
Hougardy, J. Serratosa, J. M. Stone, W. and Van Olpen, H., (1970) Interlayer water in vermiculite: Thermodynamic Properties, Packing Density, Nuclear Pulse Resonance, and i.f. Absorption Spec. Disc. Farad. Soc. 1 187193.CrossRefGoogle Scholar
Clementz, D. M. Pinnavaia, T. J. and Mortland, M. M., (1973) Stereochemistry of Hydrated Copper (II) Ions on the Interlamellar Surface of Layer silicates; an ESR Study J. Phys. Chem. 77 196200.CrossRefGoogle Scholar
Hafemeister, D. W. and Brooks Shera, E., (1966) Calculation of Mössbauer Absorption Areas for thick absorbers Nucl. Instr. Meth. 41 133134.CrossRefGoogle Scholar
Greenwood, N. N. and Gibb, T. C., (1971) Mössbauer Spectroscopy London Chapman & Hall.CrossRefGoogle Scholar
Wey, R. and Le Dred, R., (1972) Vermiculite et Vermiculiti-zation Bull. Groupe franç. Argiles XXIV 111134.CrossRefGoogle Scholar
Singwi, K. S. and Sjölander, A., (1960) Resonance absorption of nuclear gamma rays and the dynamics of atomic motions Phys. Rev. 120 10931102.CrossRefGoogle Scholar
Zory, P., (1965) Nuclear electric-field gradient determination utilizing the Mössbauer Effect (Fe57) Phys. Rev. 140 4A.CrossRefGoogle Scholar
Goldstein, H., (1966) Classical Mechanics. Massachusetts Addison-Wesley.Google Scholar
Goldanskii, V. I. and Suzdalev, I. P., (1971) Application of the Mössbauer spectroscopy to the study of surface phenomena) Proc. Conf. Application of the Mössbauer Effect Budapest Dérsi, Aditor, Akadémiai Kiado.Google Scholar