Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T09:23:34.401Z Has data issue: false hasContentIssue false

The Ordering of Cetylpyridinium Bromide on Vermiculite

Published online by Cambridge University Press:  01 July 2024

P. G. Slade
Affiliation:
Division of Soils, C.S.I.R.O., Adelaide, Australia
M. Raupach
Affiliation:
Division of Soils, C.S.I.R.O., Adelaide, Australia
W. W. Emerson
Affiliation:
Division of Soils, C.S.I.R.O., Adelaide, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray superlattice reflections, infrared spectroscopy, and chemical analyses have established that cetylpyridinium bromide (CPB) is highly ordered when adsorbed on vermiculite. The molecules, which stand at about 57° to the silicate surface, form close-packed arrays. Full surface coverage is achieved only for the most highly charged vermiculites. The packing within the arrays accounted for the superlattice observed and each adsorbed molecule had an area of 18.4 Å2 at the surface. The implications of these findings for the CPB method used in soil surface area studies are discussed.

Резюме

Резюме

Рентгеновские сверхрешетчатые отражения, инфракрасная спектроскопия и химические анализы показали, что цетилпиридиновый бромид /ЦПБ/ в высшей степени упорядочен, когда адсорбирован вермикулитом. Молекулы, которые расположены под углом около 57° к поверхности силиката, образуют тесно упакованные системы. Покрытие всей поверхности достигается только для вермикулитов с наиболее высокими зарядами. Наблюдалась упаковка в пределах систем, обуслов ленная свехрешеткой, и было установлено, что каждая адсорбированная молекула имеет на поверхности площадь 18,4 Å2. Обсуждаются возможности использования этих выводов для изучения поверхности почвы методом ЦПБ.

Kurzreferat

Kurzreferat

Röntgenüberstrukturreflektionen, Infrarotspektroskopie und chemische Analyse haben bewiesen, daß Cetylpyridiniumbromid (CPB) in hohem Grade geordnet ist, wenn es an Kieselgur adsorbiert ist. Die Moleküle, welche sich in einem etwa 57° Winkel zu der Silikatoberfläche befinden, formen kompakte Anordnungen. Nur die am höchst geladenen Kieselgure bedecken die ganze Oberfläche des Silikates. Das Aufschichten innerhalb der Anordnungen erklärt die Überstruktur, welche gesehen wurde. Jedes Molekül maß 18,4 A2 an der Oberfläche. Die Bedeutung dieser Befunde für die CPB-Methode, welche in Untersuchungen von Erdoberflächen benutzt wird, ist diskutiert.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Aringhieri, R. and Sequi, P. (1978) Modification of Soil Structure: J. Wiley and Sons, New York . 145150.Google Scholar
Burford, J. R., Deshpande, T. L. Greenland, D. J. and Quirk, J. P. (1964) Influence of organic materials on the determination of the specific surface areas of soils: J. Soil Sci. 15, 192201.CrossRefGoogle Scholar
Farrar, D. M. and Coleman, J. D. (1967) The correlation of surface area with other properties of nineteen British clay soils: J. Soil Sci. 18, 118124.CrossRefGoogle Scholar
Flournoy, P. A. and Schaffers, W. J. (1966) Attenuated total reflection spectra from surfaces of anisotropic, absorbing films: Spectrochim. Acta 22, 513.CrossRefGoogle Scholar
Floglizzo, R. and Novak, A. (1969) Spectres de vibration de quelques halogenures de pyridinium: J. Chim. Phys. Phys. Chim. Biol. 66, 15391550.CrossRefGoogle Scholar
Foglizzo, R. and Novak, A. (1970) Spectres de vibration de 1700 à 1250 cm–1 des iodures de n-methyl pyridinium: C5H5NCH3+i, C5H5NCD3+i, C5D5NCH3+i et C5D5NCD3+i: J. Chim. Phys. Phys. Chim. Biol. 67, 214216.CrossRefGoogle Scholar
Fripiat, J. J. (1964) Surface properties of alumino-silicates: Clays & Clay Minerals 12, 327358.Google Scholar
Gall, J. G. (1967) The light microscope as an optical diffractometer: J. Cell Sci. 2, 163168.CrossRefGoogle ScholarPubMed
Greenland, D. J. and Quirk, J. P. (1960) Adsorption of 1-n-alkyl pyridinium bromides by montmorillonite: Clays & Clay Minerals 9, 484499.Google Scholar
Greenland, D. J. and Quirk, J. P. (1962) Surface areas of soil colloids: Trans. Int. Soil Conf., New Zealand, pp. 310.Google Scholar
Greenland, D. J. and Quirk, J. P. (1964) Determination of the total specific surface areas of soils by adsorption of cetyl pyridinium bromide: J. Soil Sci. 15, 178191.CrossRefGoogle Scholar
Greene-Kelly, R. (1955a) Sorption of aromatic organic compounds by montmorillonite, Part 1.—Orientation studies: Trans. Faraday Soc. 51, 412424.CrossRefGoogle Scholar
Greene-Kelly, R. (1955b) Sorption of aromatic organic compounds by montmorillonite, Part 2.—Packing studies with pyridine: Trans. Faraday Soc. 51, 425430.CrossRefGoogle Scholar
Malik, W. U., Srivastava, S. K. and Gupta, D. (1972) Studies on the interaction of cationic surfactants with clay minerals: Clay Miner. 9, 369382.CrossRefGoogle Scholar
Mathieson, A. McL. and Walker, G. F. (1954) Crystal structure of magnesium vermiculite: Am. Mineral. 39, 231255.Google Scholar
Norrish, K. (1973) Factors in the weathering of mica to vermiculite: Proc. 1972 Int. Clay Conf. Madrid, pp. 417432.Google Scholar
Quirk, J. P. (1955) Significance of surface areas calculated from water vapour sorption isotherms by use of the B.E.T. equation: Soil Sci. 80, 423430.CrossRefGoogle Scholar
Raupach, M., Slade, P. G., Janik, L. and Radoslovich, E. W. (1975) A polarized infrared and X-ray study of lysine-vermiculite: Clays & Clay Minerals 23, 181186.CrossRefGoogle Scholar
Raupach, M. and Janik, L. (1976) The orientation of ornithine and 6-aminohexanoic acid adsorbed on vermiculite from polarized i.r. ATR spectra: Clays & Clay Minerals 24, 127133.CrossRefGoogle Scholar
Serratosa, J. M. (1966) Infrared analysis of the orientation of pyridine molecules in clay complexes: Clays & Clay Minerals 14, 385391.CrossRefGoogle Scholar
Slade, P. G., Telleria, M. I. and Radoslovich, E. W. (1976) The structures of ornithine-vermiculite and 6-aminohexanoic acid-vermiculite: Clays & Clay Minerals 24, 134141.CrossRefGoogle Scholar
Slifkin, M. A. (1971) Change Transfer Interactions of Biomolecules: Academic Press, London. 173179.Google Scholar
Spinner, E. (1967) The vibrational spectrum of the n-methylpenta deuteropyridinium ion: Aust. J. Chem. 20, 18051813.CrossRefGoogle Scholar
Theng, B. K. G. (1974) The Chemistry of Clay-Organic Reactions: Adam Hilger, London. 2528.Google Scholar