Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T16:29:01.679Z Has data issue: false hasContentIssue false

Optimizing the Mechanical Strength of Adobe Bricks

Published online by Cambridge University Press:  01 January 2024

A. Schicker*
Affiliation:
Department of Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
S. Gier
Affiliation:
Department of Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ecologic building materials such as adobe bricks have become of greater economic importance in recent years. In the present work, the addition of selected materials to improve the compressive and bending strengths of adobe bricks was tested. The raw material (loam UD) was analyzed for its mineralogical and chemical composition. The loam studied consisted of quartz, feldspar, and the clay minerals chlorite, vermiculite, illite, and kaolinite. Prerequisites for using this loam for brick making were its grain-size distribution and the absence of expandable clay minerals.

To optimize the compressive and bending strengths of the adobe bricks, seven natural and ‘eco-friendly’ synthetic additives were admixed with the raw material and homogenized.

From this material, small adobe bricks and bars were made. One series of bricks and bars was made without additives but instead was coated with a hydrophobic impregnation cream. The bricks were stored for up to 20 days at 100 and 75% relative humidity (RH). After 1, 5, and 20 days, the compressive and bending strengths were measured to identify the critical humidity level for brick strength. The compressive and bending strengths of loam UD at dry conditions without additives showed values of 9 N/mm2 and 4.8 N/mm2, respectively. With some of the additives, the strength improved by up to 30%. The greatest increases in strength were achieved by mixing the loam with Acronal S650. Finely ground trass and diatomite also increased the dry strength. After storage at high levels of RH, these mixtures lost >50% strength. In contrast, the loam mixed with blast-furnace slag has a small initial strength but showed the smallest decreases in strength after exposure to high levels of RH.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Berge, B., 2009 The Ecology of Building Materials Oxford, UK Architectural Press 10.4324/9780080949741 421 pp.CrossRefGoogle Scholar
Binici, H. Aksogan, O. and Shah, T., 2005 Investigation of fibre reinforced mud brick as a building material Construction and Building Materials 19 313318 10.1016/j.conbuildmat.2004.07.013.CrossRefGoogle Scholar
DIN 51033, 1962 Prüfung keramischer Roh- und Werkstoffe, Bestimmung der Korngrößen durch Siebung und Sedimentation, Verfahren nach Andreasen- Blatt 1 Berlin DIN Deutsches Institut für Normung e.V., Beuth Verlag GmbH.Google Scholar
DIN 4226-1/2 (2002) Gesteinskörnungen für Beton und Mörtel; Zuschlag für Beton; Prüfung von Zuschlag mit dichtem oder porigem Gefüge.Google Scholar
Dondi, M. Guarini, G. Raimondo, M. and Venturi, I., 2002 Orimulsion flyashinclaybricks — part 2: technological behaviour of clay/ash mixtures Journal of the European Ceramic Society 22 17371747 10.1016/S0955-2219(01)00494-0.CrossRefGoogle Scholar
Füchtbauer, H., 1988 Sedimente und Sedimentgesteine Stuttgart, Germany Schweizerbart 513 pp.Google Scholar
Grosse, C.U., 2007 Advances in Construction Material 2007 Berlin Springer 10.1007/978-3-540-72448-3 497 pp.CrossRefGoogle Scholar
Lee, K.-C. Her, J.-H. and Kwon, S.-K., 2008 Red clay composites reinforced with polymeric binders Construction and Building Materials 22 22922298 10.1016/j.conbuildmat.2007.10.008.CrossRefGoogle Scholar
Lide, D.R., 2009 CRC Handbook of Chemistry and Physics 90th Boca Raton, Florida CRC Press/Taylor and Francis 2804 pp.Google Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Minke, G., 2004 Das neue Lehmbau-Handbuch: Baustoffkunde. Konstruktionen. Lehmarchitektur Staufen bei Freiburg, Germany Ökobuch Verlag 349 pp.Google Scholar
Moore, D.M. and Reynolds, RC Jr., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 378 pp.Google Scholar
Morel, J.C. Pkla, A. and Walker, P., 2007 Compressive strength testing of compressed earth blocks Construction and Building Materials 21 303309 10.1016/j.conbuildmat.2005.08.021.CrossRefGoogle Scholar
ÖNORM B 4412, 1974 Erd- und Grundbau; Untersuchung von Bodenproben; Korngrößenverteilung Wien Österreichisches Normungsinstitut.Google Scholar
ÖNORM EN 1052-2, 1999 Prüfverfahren für Mauerwerk — Teil 2: Bestimmung der Biegezugfestigkeit Wien Österreichisches Normungsinstitut.Google Scholar
ÖNORM EN 772-1, 2000 Prüfverfahren für Mauersteine — Teil 1: Bestimmung der Druckfestigkeit Wien Osterreichisches Normungsinstitut.Google Scholar
Pineda-Piñón, J. Vega-Durán, J.T. Manzano-Ramírez, A. Pérez-Robles, J.F. Balmori-Ramírez, H. and Hernández-Landaverde, M.A., 2007 Enhancement of mechanical and hydrophobic properties of Adobes for Building Industry by the addition of polymeric agents Building and Environment 42 877883 10.1016/j.buildenv.2005.10.009.CrossRefGoogle Scholar
Salmang, H. and Scholze, H., 1983 Keramik — Teil 2: Keramische Werkstoffe. Auflage 6 Berlin Springer.Google Scholar
Schultz, L.G., 1964 Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre shale US Geological Survey Professional Paper 0391-C C1C31.Google Scholar
Tucker, M.E., 2001 Sedimentary Petrology Oxford Blackwell Science 262 pp.Google Scholar
Wimmer-Frey, I. Letouzè-Zezula, G. Müller, H.W. and Schwaighofer, B., 1992 Tonlagerstätten und Tonvorkommen Österreichs. Fachverband d. Stein- u. Keramischen Industrie u. Verband d. österr Geol. B.-A., Wien Ziegelwerke.Google Scholar