Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T03:34:28.298Z Has data issue: false hasContentIssue false

Optical Absorption Spectra of Clay Minerals

Published online by Cambridge University Press:  01 July 2024

Samuel W. Karickhoff
Affiliation:
Environmental Protection Agency, National Environmental Research Center-Corvallis, Southeast Environmental Research Laboratory Athens, Georgia 30601, U.S.A.
George W. Bailey
Affiliation:
Environmental Protection Agency, National Environmental Research Center-Corvallis, Southeast Environmental Research Laboratory Athens, Georgia 30601, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A preliminary survey of electronic absorption spectra of clay minerals reveals the utility of u.v.-visible spectroscopy in the elucidation of structural, physical, and chemical properties of such systems. Spectra, which were obtained in the suspension, film, and single crystal states (where applicable), are interpreted in terms of iron-associated transitions. Microcrystalline clay minerals typically show Fe(lll) in octahedral oxo-ligand geometry whereas mica-type minerals may show a range of iron species, including octahedral Fe(III), tetrahedral Fe(III), and octahedral Fe(II). Iron affects the local site geometry and in “high iron” minerals may dictate layer geometry and subsequently the crystalline form.

Résumé

Résumé

Un tour d’horizon préliminaire des spectres d’absorption électronique des minéraux argileux révèle l’utilité de la spectroscopic ultraviolet-visible si l’on veut élucider les propriétés structurales, physiques et chimiques de tels systèmes. Les spectres, obtenus avec des suspensions, des films ou des monocristaux (quand c’est possible) sont interprétés en terme de transitions associées au fer. Les minéraux argileux microcristallins montrent d’une façon typique le Fe (III) dans une géométrie octa-édrique d’oxo-ligands, tandis que les minéraux du type mica peuvent montrer toute une série d’espèces du fer, comprenant Fe (III) octaédrique, Fe III tétraédrique et Fe (II) octaédrique. Le fer affecte la géométrie locale du site et dans les minéraux “riches en fer” peut imposer une géométrie au feuillet et par là, imposer la forme cristalline.

Kurzreferat

Kurzreferat

Eine Voranalyse der elektronischen Absorptionsspektren von Tonmineralien erweist den Wert ultraviolett-sichtbarer Spektroskopie für die Erforschung der strukturellen, physischen und chemischen Eigenschaften derartiger Systeme. Spektren, die in den Suspensions-, Film- und Einkristallzuständen (je nach Verfügbarkeit) erzielt wurden, werden als Übergangsphasen in Verbindung mit Eisen interpretiert. Mikrokristalline Tonmineralien weisen typisch Fe(III) in oktahedralem Oxoverband auf, während glimmerartige Mineralien eine Reihe von Eisenarten wie oktahedralem Fe(III), tetrahedralem Fe(III) und oktahedralem Fe(II) enthalten mögen. Eisen übt auf die lokale Lagerstättengeometrie einen Einfluß aus und kann in eisenreichen Mineralien für die Schichtengeometrie und daher die Kristallform entscheidend sein.

Резюме

Резюме

Предварительное исследование спектра электронного поглощения глинистых минералов выявило ценность видимой ультрафиолетовой спектроскопии в разъяснении структурных физических и химических особенностей таких систем. Спектры полученные от суспензии, на пленке и на сростке отдельных кристаллов (где относится) расшифровывались как соединения с железом. Микрокристаллические глинистые минералы обычно включают Fe(III) в восьмигранной оксо-лигиндной конфигурации, в то время как слюдистые минералы могут состоять из ряда железистых групп, включая октаэдральный Fe(III) тетраэдральный Fe(III) и октаэдральный Fe(II). Железо влияет на конфигурацию места заложения и в минералах с высоким содержанием железа оно может влиять на конфигурацию слоев и на форму кристаллов.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

References

Allen, G. C. and Hush, N. S., (1967) Intervalence transfer absorption Progr. Inorg. Chem. 8 357.Google Scholar
Bailey, G. W., White, J. L. and Rothberg, T., (1968) Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character of adsorbate Soil Sci. Soc. Amer. Proc. 32 222.CrossRefGoogle Scholar
Banin, A. and Lahav, N., (1968) Particle size and optical properties of montmorillonite in suspension Israel J. Chem. 6 235.CrossRefGoogle Scholar
Bowen, L. H., Weed, S. B. and Stevens, J. G., (1969) Mössbauer study of micas and their potassium depleted products Amer. Mineral. 54 72.Google Scholar
Farmer, V. C. and Russell, J. D., (1967) Infrared absorption spectrometry in clay studies Clays and Clay Minerals 15 121.CrossRefGoogle Scholar
Farmer, V. C., Russell, J. D. and Ahlrich, J. L., (1968) Characterization of clay minerals by infrared spectroscopy Ninth Intern. Congr. of Soil Sci. 3 101.Google Scholar
Faye, G. H., (1968) The optical absorption spectra of iron in six-coordinate sites in chlorite, biotite, phlogo-pite and vivianite Can. Mineral. 9 403.Google Scholar
Faye, G. H., (1968) The optical absorption spectra of certain transition metal ions in muscovite, lepidolite, and fushsite Can. J. Earth Sci. 5 31.CrossRefGoogle Scholar
Faye, G. H. and Nickel, E. H., (1970) The effect of charge transfer processes on the color and pleochroism of amphiboles Can. Mineral. 11 616.Google Scholar
Furlani, C., (1957) Spettri di assorbimento di complessi elettrostatici del Fe Gazz. Chim. Ital. 87 1 376.Google Scholar
Jorgensen, C. K., (1962) Chemical bonding inferred from visible and ultraviolet absorption spectra Sol. State Phys. 13 376.Google Scholar
Jorgensen, C. K., (1962) Orbitals In Atoms and Molecules New York Academic Press.Google Scholar
Lehmann, G., (1970) Ligand field and charge transfer spectra of Fe(III)-O complexes Z. Phys. Chem. Neue Folge 72 279.CrossRefGoogle Scholar
Lever, A. B. P., (1968) Inorganic Electronic Spectroscopy New York Elsevier.Google Scholar
McClure, D. S., (1963) Optical spectra of exchange coupled Mn2+ ion pairs in Zn Si Mn S J. Chem. Phys. 39 2850.CrossRefGoogle Scholar
Mortensen, J. L., Anderson, D. M., White, J. L. and Black, C. A., (1965) Infrared spectrometry Methods of Soil Analysis Madison, Wisconsin Am. Soc. Agronomy 743770.Google Scholar
Orgel, L. E., (1957) Ion compression and the color of ruby Nature 179 1348.CrossRefGoogle Scholar
Schlafer, H. L., (1955) Light absorption as a result of an interaction of two states of valency of the same element Z. Phys. Chem. Neue Folge 3 222.Google Scholar
Taylor, G. L., Ruotsala, A. P. and Keeling, R. O. Jr., (1968) Analysis of iron in layer silicates by Mössbauer spectroscopy Clays and Clay Minerals 16 381.CrossRefGoogle Scholar
Weaver, C. E., Wampler, J. M. and Pecuil, T. E., (1967) Mössbauer analysis of iron in clay minerals Science 156 504.CrossRefGoogle ScholarPubMed
Wehl, W. A., (1951) Light absorption as a result of interaction of two states of valency of the same element J. Phys. Coll. Chem. 55 1 507.CrossRefGoogle Scholar
White, J. L., (1971) Interpretation of infrared spectra of soil minerals Soil Sci. 112 22.CrossRefGoogle Scholar