Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T14:14:10.788Z Has data issue: false hasContentIssue false

On the kinetics of ion exchange in phlogopite — An in situ AFM study

Published online by Cambridge University Press:  01 January 2024

Kirill Aldushin
Affiliation:
Department für Geo- und Umweltwissenschaften, Sektion Kristallographie, Ludwig-Maximilians-Universität, Theresienstraße 41, 80333 München, Germany
Guntram Jordan*
Affiliation:
Department für Geo- und Umweltwissenschaften, Sektion Kristallographie, Ludwig-Maximilians-Universität, Theresienstraße 41, 80333 München, Germany
Elena Aldushina
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Wolfgang W. Schmahl
Affiliation:
Department für Geo- und Umweltwissenschaften, Sektion Kristallographie, Ludwig-Maximilians-Universität, Theresienstraße 41, 80333 München, Germany
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The kinetics of cation exchange in phlogopite have been studied in situ by hydrothermal atomic force microscopy (HAFM). The exchange of interlayer K by octylammonium ions caused an increase in the interlayer distance and the formation of reaction fronts which can be locally resolved by AFM. The observed reaction fronts revealed substantial variations in their propagation rates — even within single interlayers. This observed variability in interlayer reactivity could mainly be attributed to chemical and structural inhomogeneities of the samples. A quantitative evaluation of the front propagation at representative sites yielded a diffusion coefficient of the K+ exchange by octylammonium of 1.2±0.6 × 10−11 cm2/s assuming negligible transport normal to the layers. The reverse reaction, i.e. the exchange of organic ions by K+, resulted in a retreat of the reaction fronts and a general restoration of the original morphological state. However, indications of structural alterations and areas with trapped octylammonium ions were found.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Aldushin, K. Jordan, G. and Schmahl, W.W., (2006) Basal plane reactivity of phyllosilicates studied in situ by hydrothermal atomic force microscopy (HAFM) Geochimica et Cosmochimica Acta 70 43804391 10.1016/j.gca.2006.04.015.CrossRefGoogle Scholar
Barshad, I. and Kishk, F.M., (1968) Oxidation of ferrous iron in vermiculite and biotite alters fixation and replaceability of potassium Science 162 14011402 10.1126/science.162.3860.1401.CrossRefGoogle ScholarPubMed
Bassett, W.A., (1960) Role of hydroxyl orientation in mica alteration Geological Society of America Bulletin 71 449455 10.1130/0016-7606(1960)71[449:ROHOIM]2.0.CO;2.CrossRefGoogle Scholar
Ferrow, E.A. Kalinowski, B.E. Veblen, D.R. and Schweda, P., (1999) Alteration products of experimentally weathered biotite studied by high-resolution TEM and Mössbauer spectroscopy European Journal of Mineralogy 11 9991010 10.1127/ejm/11/6/0999.CrossRefGoogle Scholar
Ghabru, S.K. Mermut, A.R. and St. Arnaud, R.J., (1989) Layer-charge and cation-exchange characteristics of vermiculite (weathered biotite) isolated from a Gray Luvisol in northeastern Saskatchewan Clays and Clay Minerals 37 164172 10.1346/CCMN.1989.0370208.CrossRefGoogle Scholar
Higgins, S.R. Eggleston, C.M. Knauss, K.G. and Boro, C.O., (1998) A hydrothermal atomic force microscope for imaging in aqueous solution up to 150°C Review of Scientific Instruments 69 29942998 10.1063/1.1149226.CrossRefGoogle Scholar
Jordan, G. Higgins, S.R. Eggleston, C.M. Knauss, K.G. and Schmahl, W.W., (2001) Dissolution kinetics of magnesite in acidic aqueous solution, a hydrothermal atomic force microscopy (HAFM) study: Step orientation and kink dynamics Geochimica et Cosmochimica Acta 65 42574266 10.1016/S0016-7037(01)00729-3.CrossRefGoogle Scholar
Kodama, H. and Ross, G.J. (1973) Structural changes accompanying potassium exchange in a clay-size muscovite. Pp. 481492 in: Proceedings of the International Clay Conference, Madrid 1972, (Serratosa, J.M., editor). Div. Ciencias C.S.I.C., Madrid.Google Scholar
Lagaly, G., (1981) Characterization of clays by organic compounds Clay Minerals 16 121 10.1180/claymin.1981.016.1.01.CrossRefGoogle Scholar
Lagaly, G., Tributh, H. and Lagaly, G., (1991) Erkennung und Identifizierung von Tonmineralen mit organischen Stoffen Identifizierung und Charakterisierung von Tonmineralen Gießen, Germany Berichte der Deutschen Ton- und Tonmineralgruppe, DTTG 86130.Google Scholar
Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates. In: Proceedings of the International Clay Conference, Tokyo, 1969, Vol. 1 (Heller, L., editor). Israel University Press, Jerusalem.Google Scholar
Laird, D.A. Scott, A.D. and Fenton, T.E., (1987) Interpretation of alkylammonium characterization of soil clays Soil Science Society of America Journal 51 16591663 10.2136/sssaj1987.03615995005100060046x.CrossRefGoogle Scholar
Mackintosh, E.E. Lewis, D.G. and Greenland, D.J., (1971) Dodecylammonium-mica complexes — I. Factors affecting the exchange reactions Clays and Clay Minerals 19 209218 10.1346/CCMN.1971.0190402.CrossRefGoogle Scholar
Marcks, C. Wachsmuth, H. and von Reichenbach, H.G., (1989) Preparation of vermiculites for HRTEM Clay Minerals 24 2332 10.1180/claymin.1989.024.1.02.CrossRefGoogle Scholar
Mermut, A.R. and Lagaly, G., (2001) Baseline studies of the Clay Minerals Society source clays: Layer-charge determination and characteristics of those minerals containing 2:1 layers Clays and Clay Minerals 49 393397 10.1346/CCMN.2001.0490506.CrossRefGoogle Scholar
Newman, A.C.D., (1970) The synergetic effect of hydrogen ions on the cation exchange of potassium in micas Clay Minerals 8 361373 10.1180/claymin.1970.008.4.01.CrossRefGoogle Scholar
Rausell-Colom, J.A. Sweatman, T.R. Wells, C.B. Norrish, K., Hallsworth, E.G. and Crawford, D.V., (1964) Studies in the artificial weathering of mica Experimental Pedology London Butterworth 4072.Google Scholar
Ruehlicke, G. and Kohler, E.E., (1981) A simplified procedure for determining layer charge by the n-alkylammonium method Clay Minerals 16 305307 10.1180/claymin.1981.016.3.08.CrossRefGoogle Scholar
Vali, H. Hesse, R. and Kodama, H., (1992) Arrangement of n-alkylammonium ions in phlogopite and vermiculite: an XRD and TEM study Clays and Clay Minerals 40 240245 10.1346/CCMN.1992.0400214.CrossRefGoogle Scholar
Walker, G.F., (1959) Diffusion of exchangeable cations in vermiculite Nature 184 13921393 10.1038/1841392a0.CrossRefGoogle Scholar
Walker, G.F., (1967) Interactions of n-alkylammonium ions with mica-type layer lattices Clay Minerals 7 129143 10.1180/claymin.1967.007.2.01.CrossRefGoogle Scholar
Weiss, A., (1963) Mica-type layer silicates with alkylammonium ions Clay Minerals 10 191224 10.1346/CCMN.1961.0100116.CrossRefGoogle Scholar