Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T12:02:00.211Z Has data issue: false hasContentIssue false

Occurrence of Clinoptilolite and Mordenite in Tertiary Calc-Alkaline Pyroclastites from Sardinia (Italy)

Published online by Cambridge University Press:  28 February 2024

Maria R. Ghiara
Affiliation:
Dipartimento di Scienze della Terra, Università Federico II di Napoli, via Mezzocannone 8, 80134 Napoli, Italy
Carmela Petti
Affiliation:
Dipartimento di Scienze della Terra, Università Federico II di Napoli, via Mezzocannone 8, 80134 Napoli, Italy
Enrico Franco
Affiliation:
Dipartimento di Scienze della Terra, Università Federico II di Napoli, via Mezzocannone 8, 80134 Napoli, Italy
Roberto Lonis
Affiliation:
PROGEMISA Società Sarda Valorizzazione Georisorse, Cagliari, Italy
Santina Luxoro
Affiliation:
PROGEMISA Società Sarda Valorizzazione Georisorse, Cagliari, Italy
Lucio Gnazzo
Affiliation:
Dipartimento di Scienze della Terra, Università Federico II di Napoli, via Mezzocannone 8, 80134 Napoli, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clinoptilolite and mordenite occur as diagenetic products of medium-grained, moderately welded and poorly sorted pyroclastic flows belonging to the Tertiary calc-alkaline volcanism of Sardinia. Both clinoptilolite and mordenite occur within pyroclastic flows of the same stratigraphic unit. Mordenite frequently occurs in the late volcanic sequences from Anglona area (northern Sardinia). Textural features indicate that zeolites are products of glass alteration. Thin sections show either complete alteration of glassy shards by clinoptilolite and mordenite or unaltered shards with clinoptilolite or mordenite confined to the cineritic matrix. During the zeolitization process, interacting fluids were important in the mobilization and distribution of alkali elements. The compositional variations of clinoptilolite and mordenite within a single sample showed trends that suggest steps in a continuous process probably evolving towards equilibrium conditions.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Alberti, A., 1975 The crystal structure of two clinoptilolites Tschermaks Mineraogische und Petrographische Mitteil-ngen 22 2537 10.1007/BF01081301.CrossRefGoogle Scholar
Alietti, A., 1972 Polymorphism and crystal-chemistry of heulandites and clinoptilolites American Mineralogist 57 14481462.Google Scholar
Alietti, A. and Ferrarese, G., 1967 Clinoptilolite, Na-mont-morillonite e ossidi di manganese in una formazione sedentaria a Zovencedo (Vicenza) Mineralogical et Petrografica Acta 13 119138.Google Scholar
Alietti, A. Brigatti, M.F. and Poppi, L., 1977 Natural Carich clinoptilolites (heulandite of group 3): New data re-wiew Neues Jahrbuch für Mineralogie Monatshefte H11 493501.Google Scholar
Assorgia, A. Balogh, K. Lecca, L. Ibba, A. Porcu, A. Secchi, F. and Tilocca, G., 1995 Volcanological characters and structural context of Oligo-Miocene volcanism successions from central Sardinia (Italy) Accademia Nazionale delle Scienze Atti Convonvegni Rapporti Alpi-Appennino 397424.Google Scholar
Barth, T.F.W., 1952 Theoretical Petrology, a Textbook on the Origin and Evolution of Rocks. .Google Scholar
Barth-Wirsching, U. and Holler, H., 1989 Experimental studies on zeolite formation conditions European Journal of Mineralogy 1 489506 10.1127/ejm/1/4/0489.CrossRefGoogle Scholar
Beccaluva, L. Civetta, L. Macciotta, G. and Ricci, C.A., 1985 Geochronology in Sardinia: Results and problems Rendi-conti Società Italiana di Minealogia e Petrografía 40 5772.Google Scholar
Bence, A.E. and Albee, A.L., 1967 Empirical correction factors for the electron microanalysis of silicates and oxides Journal of Geology 76 382403 10.1086/627339.CrossRefGoogle Scholar
Boles, J.R., 1972 Composition, optical properties, cell dimensions and thermal stability of some heulandite group zeolites American Mineralogist 57 14631493.Google Scholar
Boles, J.R., Kallo, D. and Sharry, H.S., 1988 Occurrences of natural zeolites. Present status and future research Occurrence, Properties and Utilization of Natural Zeolites .Google Scholar
Carmignani, L. Barca, S. Disperati, L. Fantozzi, P. Funedda, A. Oggiano, G. and Pasci, S., 1994 Tertiary compression and extension in Sardinia Basement Bollettino di Geofísica Teorica ed Applicata 36 4562.Google Scholar
Cherchi, A. and Montadert, L., 1982 The Oligo-Miocene rift of Sardinia and early history of the western Mediterranean basin Nature 298 736739 10.1038/298736a0.CrossRefGoogle Scholar
Crovisier, J.L. Honnorez, J. and Eberhart, J.P., 1987 Dissolution of basaltic glass in seawater: Mechanism and rate Geochimica et Cosmochimica Acta 51 29772990 10.1016/0016-7037(87)90371-1.CrossRefGoogle Scholar
Crovisier, J. Atassi, H. Daux, V. and Eberhart, J.P., 1990 Hydrolyse d’un vere basaltique tholéiitique à 60°C. Dissolution sélective pui congruente par élévation de pH Comptes Rendus de l’Académie des Sciences de Paris, France 310 941946.Google Scholar
Crovisier, J.L. Honnorez, J. Fritz, B. and Petit, J.C., 1992 Dissolution of subglacial volcanic glasses from Iceland: Laboratory study and modelling Applied Geochemistry Supplemental Issue 1 5581 10.1016/S0883-2927(09)80064-4.CrossRefGoogle Scholar
Daux, V. Crovisier, J.L. Hemond, C. and Petit, J.C., 1994 Geochemical evolution of a basaltic rock submitted to weathering: Fate of the major elements rare earth elements and thorium Geochimica et Cosmochimica Acta 58 49414954 10.1016/0016-7037(94)90223-2.CrossRefGoogle Scholar
Florke, O.W. Jones, J.B. and Segnit, E.R., 1975 Opal-CT crystals Neues Jahrbuch für Mineralogie Monatshefte 369377.Google Scholar
Ghiara, M.R. and Petti, C., 1996 Chemical alteration of volcanic glasses and related control by secondary minerals: Experimental studies Aquatic Geochemistry 1 329354 10.1007/BF00702738.CrossRefGoogle Scholar
Ghiara, M.R. Franco, E. Petti, C. Stanzione, D. and Valentino, G.M., 1993 Hydrothermal interaction between basaltic glass, deionized water and seawater Chemical Geology 104 125138 10.1016/0009-2541(93)90146-A.CrossRefGoogle Scholar
Ghiara, M.R. Pett, C. Franco, E. Luxoro, S. Gnazzo, L. and Aiello, R., 1995 Diagenetic clinoptilolite from pyroclastic flows of northern Sardinia Proceedings III Convegno Nazion-ale Scienza e Tecnologia dette Zeoliti 349353.Google Scholar
Gottardi, G. and Galli, E., 1985 Natural Zeolites 10.1007/978-3-642-46518-5.CrossRefGoogle Scholar
Graetsch, H., 1994 Structural characteristics of opaline and microcrystalline silica minerals Silica Physical Behavior, Geochemistry, and Materials Applications 29 211232.Google Scholar
Hajash, A. and Bloom, M.A., 1991 Marine diagenesis of feldspathic sand: A flow-through experimental study at 200°C 1 kbar Chemical Geology 89 359377 10.1016/0009-2541(91)90025-M.CrossRefGoogle Scholar
Henley, R.W. and Hellis, A.J., 1983 Geothermal systems ancient and modern: A geochemical review Earth Science Reviews 19 150 10.1016/0012-8252(83)90075-2.CrossRefGoogle Scholar
Iijima, A. and Utada, M., 1966 Zeolites in sedimentary rocks with reference to the depositional environments and zonal distribution Sedimentology 7 327357 10.1111/j.1365-3091.1966.tb01299.x.CrossRefGoogle Scholar
Jercinovic, M.J. Keil, K. Smith, M.R. and Schmitt, R.A., 1990 Alteration of basaltic glasses from north-central Brtish Columbia, Canada Geochimica et Cosmochimica Acta 54 26792696 10.1016/0016-7037(90)90004-5.CrossRefGoogle Scholar
Jones, J.B. and Segnit, E.R., 1971 The nature of opal. I. Nomenclature and constituent phases Journal of the Geology Society of Australia 18 5768 10.1080/00167617108728743.CrossRefGoogle Scholar
Mason, B. and Sand, L.B., 1960 Clinoptilolite from Patagonia. The relationship between clinoptilolite and heulandite American Mineralogist 45 341350.Google Scholar
Mumpton, F.A., 1960 Clinoptilolite redefined American Mineralogist 45 351369.Google Scholar
Mumpton, F.A. Ormsby, W.C., Sand, L.B. and Mumpton, F.A., 1976 Morphology of zeolites in sedimentary rocks by scanning electron microscopy Natural Zeolites Occurrence, Properties, Uses 113132.CrossRefGoogle Scholar
Ogihara, S. and Iijima, A., 1990 Exceptionally K-rich cli-noptilolite-heulandite group zeolites from three offshore boreholes off northern Japan European Journal of Mineralogy 2 819826 10.1127/ejm/2/6/0819.CrossRefGoogle Scholar
Passaglia, E., 1975 The crystal chemistry of mordenites Contributions to Mineralogy and Petrology 50 6577 10.1007/BF00385222.CrossRefGoogle Scholar
Passaglia, E. Artioli, G. Gualtier, I.A. and Carnevali, R., 1995 Diagenetic mordenite from Ponza, Italy European Journal of Mineralogy 7 429438 10.1127/ejm/7/2/0429.CrossRefGoogle Scholar
Progemisa 1990-, 1994 Ricerca mineraria di base .Google Scholar
Segnit, E.R. Anderson, C.A. and Jones, J.B., 1970 A scanning microscope study of the morphology of opal Serch 1 349351.Google Scholar
Seyfried, W.E. and Bischoff, J.L., 1979 Low temperature basalt alteration by seawater: An experimental study at 70°C and 150°C Geochimica et Cosmochimica Acta 43 19371947 10.1016/0016-7037(79)90006-1.CrossRefGoogle Scholar
Shiraki, R. and Iiyama, J.T., 1990 Na-K ion exchange reaction between rhyolitic glass and (Na, K)Cl aqueous solution under hydrothermal conditions Geochimica et Cosmochimica Acta 54 29232931 10.1016/0016-7037(90)90110-7.CrossRefGoogle Scholar
Thornton, E.C. and Seyfried, W.E., 1985 Sediment-seawater interaction at 200 and 300°C, 500 bars pressure: The role of sediment composition in diagenesis and low grade meta-morphism of marine clay Geological Society of America Bulletin 96 12871295 10.1130/0016-7606(1985)96<1287:SIAACB>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Tsitsishvili, G.V. Andronikashvili, T.G. Kirov, G.N. and Filizova, L.D., 1992 Natural Zeolites .Google Scholar
Vardabasso, S., 1963 Die ausseralpine taphrogenese in Ka-ledonish-variszisch konsolidierten sardischen vorlande Sonderdruck aus der Geologischen Rundschau band 53 613630 10.1007/BF02054555.CrossRefGoogle Scholar