Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T11:39:43.817Z Has data issue: false hasContentIssue false

Nickel Solubility and Precipitation in Soils: A Thermodynamic Study

Published online by Cambridge University Press:  01 January 2024

Edward Peltier*
Affiliation:
Environmental Soil Chemistry Research Group, Department of Plant and Soil Sciences, 152 Townsend Hall, University of Delaware, Newark, DE 19717-1303, USA
Ramakumar Allada*
Affiliation:
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
Alexandra Navrotsky
Affiliation:
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
Donald L. Sparks
Affiliation:
Environmental Soil Chemistry Research Group, Department of Plant and Soil Sciences, 152 Townsend Hall, University of Delaware, Newark, DE 19717-1303, USA
*
*E-mail address of corresponding author: [email protected]
Present address: Mail Code ES4, NASA Johnson Space Center, Houston, TX 77058, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation of mixed-metal-Al layered double hydroxide (LDH) phases similar to hydrotalcite has been identified as a significant mechanism for immobilization of trace metals in some environmental systems. These precipitate phases become increasingly stable as they age, and their formation may therefore be an important pathway for sequestration of toxic metals in contaminated soils. However, the lack of thermodynamic data for LDH phases makes it difficult to model their behavior in natural systems. In this work, enthalpies of formation for Ni LDH phases with nitrate and sulfate interlayers were determined and compared to recently published data on carbonate interlayer LDHs. Differences in the identity of the anion interlayer resulted in substantial changes in the enthalpies of formation of the LDH phases, in the order of increasing enthalpy carbonate<sulfate<nitrate. Substitution of silica for carbonate resulted in an even more exothermic enthalpy of formation, confirming that silica substitution increases the stability of LDH precipitates. Both mechanical mixture and solid-solution models could be used to predict the thermodynamic properties of the LDH phases. Modeling results based on these thermodynamic data indicated that the formation of LDH phases on soil mineral substrates decreased Ni solubility compared to Ni(OH)2 over pH 5–9 when soluble Al is present in the soil substrate. Over time, both of these precipitate phases will transform to more stable Ni phyllosilicates.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Allada, R.K. Navrotsky, A. Berbeco, H.T. and Casey, W.H., (2002) Thermochemistry and aqueous solubilities of hydrotalcite-like solids Science 296 721723 10.1126/science.1069797.CrossRefGoogle ScholarPubMed
Allada, R.K. Navrotsky, A. and Boerio-Goates, J., (2005) Thermochemistry of hydrotalcite-like phases in the MgO-Al2O3-CO2-H2O system: A determination of enthalpy, entropy, and free energy of hydrotalcite-like solids American Mineralogist 90 329355 10.2138/am.2005.1737.CrossRefGoogle Scholar
Allada, Rama Kumar Peltier, Edward Navrotsky, Alexandra Casey, William H. Johnson, C. Annette Berbeco, Hillary Thompson and Sparks, Donald L., (2006) Calorimetric determination of the enthalpies of formation of hydrotalcite-like solids and their use in the geochemical modeling of metals in natural waters Clays and Clay Minerals 54 4 409417 10.1346/CCMN.2006.0540401.CrossRefGoogle Scholar
Allison, J.D., Brown, D.S. and Novo-Gradac, K.J. (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems. U.S. Environmental Protection Agency.Google Scholar
Bellotto, M. Rebours, B. Clause, O. Lynch, J. Bazin, D. and Elkaim, E., (1996) A reexamination of hydrotalcite crystal chemistry Journal of Physical Chemistry 100 85278534 10.1021/jp960039j.CrossRefGoogle Scholar
Bourrié, G. Trolard, F. Refait, P. and Feder, F., (2004) A solid-solution model for Fe(II)-Fe(III)-Mg(II) green rusts and fougerite and estimation of their gibbs free energies of formation Clays and Clay Minerals 52 382394 10.1346/CCMN.2004.0520313.CrossRefGoogle Scholar
Bravo-Suárez, J.J. Páez-Mozo, E.A. and Oyama, S.T., (2004) Models for the estimation of thermodynamic properties of layered double hydroxides: Application to the study of their anion exchange characteristics Química Nova 27 574581 10.1590/S0100-40422004000400011.CrossRefGoogle Scholar
Bravo-Suárez, J.J. Páez-Mozo, E.A. and Oyama, S.T., (2004) Review of the synthesis of layered double hydroxides: A thermodynamic approach Quimica Nova 27 601614.CrossRefGoogle Scholar
Brindley, G.W., (1980) Lattice parameters and compositional limits of mixed Mg, Al hydroxy structures Mineralogical Magazine 43 1047 10.1180/minmag.1980.043.332.14.CrossRefGoogle Scholar
Brindley, G.W. and Kikkawa, S., (1979) A crystal-chemical study of Mg,Al and Ni,Al hydroxy-perchlorates and hydroxycarbonates American Mineralogist 64 836843.Google Scholar
Brindley, G.W. and Kikkawa, S., (1980) Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite Clays and Clay Minerals 28 8791 10.1346/CCMN.1980.0280202.CrossRefGoogle Scholar
Cavani, F. Trifirò, F. and Vaccari, A., (1991) Hydrotalicte-like anion clays: Preparation, properties and applications Catalysis Today 11 173301 10.1016/0920-5861(91)80068-K.CrossRefGoogle Scholar
Dähn, R. Scheidegger, A.M. Manceau, A. Schlegel, M.L. Baeyens, B. Bradbury, M.H. and Morales, M., (2002) Neoformation of Ni phyllosilicate upon Ni uptake on montmorillonite: A kinetics study by powder and polarized extended X-ray absorption fine structure spectroscopy Geochimica et Cosmochimica Acta 66 23352347 10.1016/S0016-7037(02)00842-6.CrossRefGoogle Scholar
Decarreau, A., (1980) Crystallogénèse expérimentale des smectites magnésiennes: hectorite, stévensite Bulletin de Mineralogie 103 579590.CrossRefGoogle Scholar
Decarreau, A. Bonnin, D. Badaut-Trauth, D. Couty, R. and Kaiser, P., (1987) Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions Clay Minerals 22 207223 10.1180/claymin.1987.022.2.09.CrossRefGoogle Scholar
Depège, C. El-Metouri, F.-Z. Forano, C. de Roy, A. and Dupuis, J., (1996) Polymerization of silicates in layered double hydroxides Chemistry of Materials 8 952960 10.1021/cm950533k.CrossRefGoogle Scholar
d’Espinose de la Caillerie, J.-B. Karmeree, M. and Clause, O., (1995) Impregnation of γ-alumina with Ni(II) or Co(II) ions at neutral pH: Hydrotalcite-type coprecipitate formation and characterization Journal of the American Chemical Society 117 1147111481 10.1021/ja00151a010.CrossRefGoogle Scholar
Ford, R.G. and Sparks, D.L., (2000) The nature of Zn precipitates formed in the presence of pyrophyllite Environmental Science and Technology 34 24792483 10.1021/es991330q.CrossRefGoogle Scholar
Ford, R.G. Scheinost, A.C. Scheckel, K.G. and Sparks, D.L., (1999) The link between clay mineral weathering and the stabilization of Ni surface precipitates Environmental Science and Technology 33 31403144 10.1021/es990271d.CrossRefGoogle Scholar
Ford, R.G. Scheinost, A.C. and Sparks, D.L., (2001) Frontiers in metal speciation/precipitation mechanisms on soil mineral surfaces Advances in Agronomy 74 4162 10.1016/S0065-2113(01)74030-8.CrossRefGoogle Scholar
Génin, J.-M. Refait, P. Bourrié, G. Abdelmoula, M. and Trolard, F., (2001) Structure and stability of the Fe(II)-Fe(III) green rust ‘fougerite’ mineral and its potential for reducing pollutants in soil solutions Applied Geochemistry 16 559570 10.1016/S0883-2927(00)00043-3.CrossRefGoogle Scholar
Gustafsson, J.P. (2004) Visual MINTEQ v 2.30. Swedish Royal Institute of Technology (KTH).Google Scholar
Hummel, W. and Curti, E., (2003) Nickel aqueous speciation and solubility at ambient conditions: a thermodynamic elegy Monatshefte für Chemie 134 941973 10.1007/s00706-003-0010-8.CrossRefGoogle Scholar
Johnson, C.A. and Glasser, F.P., (2003) Hydrotalcite-like minerals (M2Al(OH)6(CO3)0.5.XH2O where M=Mg,Zn,Co,Ni) in the environment: synthesis, characterization and thermodynamic stability Clays and Clay Minerals 51 18 10.1346/CCMN.2003.510101.CrossRefGoogle Scholar
Kloprogge, J.T. Hickey, L. and Frost, R.L., (2001) Heating stage Raman and infrared emission spectroscopic study of the dehydroxylation of synthetic Mg-hydrotalcite Applied Clay Science 18 3749 10.1016/S0169-1317(00)00028-4.CrossRefGoogle Scholar
Lindsay, W.L. Ajwa, H.A., Loeppert, R.H. Goldberg, S. and Schwab, A.P., (1995) Use of MINTEQA2 in teaching soil chemistry Chemical Equilibrium Reaction Models Madison, Wisconsin American Society of Agronomy 219239.Google Scholar
Manceau, A. Calas, G. and Decarreau, A., (1985) Nickel-bearing clay minerals: 1. Optical spectroscopic study of nickel crystal chemistry Clay Minerals 20 367387 10.1180/claymin.1985.020.3.08.CrossRefGoogle Scholar
Miyata, S., (1975) The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties — I: The systems Mg2+-Al3+-NO3, Mg2+-Al3+-Cl,Mg2+-Al3+-ClO4, Ni2+-Al3+-Cl and Zn2+-Al3+-Cl Clays and Clay Minerals 23 369375 10.1346/CCMN.1975.0230508.CrossRefGoogle Scholar
Miyata, S., (1983) Anion-exchange properties of hydrotalcitelike compounds Clays and Clay Minerals 31 305311 10.1346/CCMN.1983.0310409.CrossRefGoogle Scholar
Naumov, G.B., Ryzhenko, B.N. and Khodakovsky, I.L. (1974) Handbook of Thermodynamic Data. National Technical Information Service, Pb-226, 722/7GA. US Department of Commerce.Google Scholar
Navrotsky, A., (1997) Progress and new directions in high temperature calorimetry revisited Physics and Chemistry of Minerals 24 222241 10.1007/s002690050035.CrossRefGoogle Scholar
Navrotsky, A. Rapp, R.P. Smelik, E. Burnley, P. Corcone, S. Chai, L. and Bose, K., (1994) The behavior of H2O and CO2 in high-temperature lead borate solution calorimetry of volatile-bearing phases American Mineralogist 79 10991109.Google Scholar
O’Day, P.A. Parks, G.A. Brown, G.E. Jr., (1994) Molecular-structure and binding-sites of cobalt(II) surface complexes on kaolinite from X-ray absorption spectroscopy Clays and Clay Minerals 42 337355 10.1346/CCMN.1994.0420312.CrossRefGoogle Scholar
Pausch, I. Lohse, H.-H. Schürmann, K. and Allmann, R., (1986) Synthesis of disordered and Al-rich hydrotalcite-like compounds Clays and Clay Minerals 34 507510 10.1346/CCMN.1986.0340502.CrossRefGoogle Scholar
Reichle, W.T., (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite) Solid State Ionics 22 135141 10.1016/0167-2738(86)90067-6.CrossRefGoogle Scholar
Ressler, T., (1998) WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows Journal of Synchrotron Radiation 5 118122 10.1107/S0909049597019298.CrossRefGoogle ScholarPubMed
Roberts, D.R. Ford, R.G. and Sparks, D.L., (2003) Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy Journal of Colloid and Interface Science 263 364376 10.1016/S0021-9797(03)00281-9.CrossRefGoogle ScholarPubMed
Robie, R.A. and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. US Geological Survey Bulletin, 2131.Google Scholar
Rossini, F.D., Wagman, D.D., Evans, W.H., Levine, S. and Jaffe, I. (1952) Selected values of chemical thermodynamic properties. Circular of the National Bureau of Standards 500. US Government Printing Office.Google Scholar
Scheckel, K.G. and Sparks, D.L., (2001) Dissolution kinetics of nickel surface precipitates on clay mineral and oxide surfaces Soil Science Society of America Journal 65 685694 10.2136/sssaj2001.653685x.CrossRefGoogle Scholar
Scheckel, K.G. Scheinost, A.C. Ford, R.G. and Sparks, D.L., (2000) Stability of layered Ni hydroxide surface precipitates — A dissolution kinetics study Geochimica et Cosmochimica Acta 64 27272735 10.1016/S0016-7037(00)00385-9.CrossRefGoogle Scholar
Scheidegger, A.M. Lamble, G. and Sparks, D.L., (1997) Spectroscopic evidence for the formation of mixed-cation hydroxide phases upon metal sorption on clays and aluminum oxides Journal of Colloid and Interface Science 186 118128 10.1006/jcis.1996.4624.CrossRefGoogle Scholar
Scheidegger, A.M. Strawn, D.G. Lamble, G. and Sparks, D.L., (1998) The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: A time-resolved XAFS study Geochimica et Cosmochimica Acta 62 22332245 10.1016/S0016-7037(98)00136-7.CrossRefGoogle Scholar
Scheinost, A.C. and Sparks, D.L., (2000) Formation of layered single and double metal hydroxide precipitates at the mineral/water interface: A multiple-scattering XAFS analysis Journal of Colloid and Interface Science 223 167178 10.1006/jcis.1999.6638.CrossRefGoogle ScholarPubMed
Tang, J. and Johannesson, K.H., (2003) Speciation of rare earth elements in natural terrestrial waters: Assessing the role of dissolved organic matter from the modeling approach Geochimica et Cosmochimica Acta 67 23212339 10.1016/S0016-7037(02)01413-8.CrossRefGoogle Scholar
Taylor, R.M., (1984) The rapid formation of crystalline double hydroxy salts and other compounds by controlled hydrolysis Clay Minerals 19 591603 10.1180/claymin.1984.019.4.06.CrossRefGoogle Scholar
Thompson, H.A. Parks, G.A. and Brown, G.E., (1999) Ambient-temperature synthesis, evolution, and characterization of cobalt-aluminum hydrotalcite-like solids Clays and Clay Minerals 47 425438 10.1346/CCMN.1999.0470405.CrossRefGoogle Scholar
Thompson, H.A. Parks, G.A. and Brown, G.E., (1999) Dynamic interactions of dissolution, surface adsorption and precipitation in an aging cobalt(II)-clay-water system Geochimica et Cosmochimica Acta 63 17671779 10.1016/S0016-7037(99)00125-8.CrossRefGoogle Scholar
Towle, S.N. Bargar, J.R. Brown, G.E. Jr. and Parks, G.A., (1997) Surface precipitation of Co(II)(aq) on A12O3 Journal of Colloid and Interface Science 187 6268 10.1006/jcis.1996.4539.CrossRefGoogle Scholar
Zabinsky, S.I. Rehr, J.J. Ankudinoc, A. Albers, R.C. and Eller, M.J., (1995) Multiple scattering calculations of X-ray absorption spectra Physics Review B 52 2995 10.1103/PhysRevB.52.2995.CrossRefGoogle ScholarPubMed