Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:11:54.335Z Has data issue: false hasContentIssue false

A New Method for the Prediction of Gibbs Free Energies of Formation of Phyllosilicates (10 Å and 14 Å) Based on the Electronegativity Scale

Published online by Cambridge University Press:  01 January 2024

Philippe Vieillard*
Affiliation:
UMR-CNRS 6532 Hydr‘ASA’, 40 ave du Recteur Pineau, 86022 Poitiers Cedex, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The method for prediction of Gibbs free energies of formation, based on the parameter ΔGO=Mz+(clay) characterizing the oxygen affinity of the cation Mz+, on the smectites, considered as hydrated clay minerals, has been used for micas and brittle micas, and yielded underestimated values. This method of prediction can be improved by a new set of parameters ΔGO=Mz+(clay), characterizing the electronegativity of a cation in a specific site (interlayer, octahedral, tetrahedral in the 10 Å minerals), determined by minimizing the difference between experimental Gibbs free energies and calculated Gibbs free energies of formation from constituent oxides. By considering the crystal structure of 10 Å and 14 Å minerals, and assuming the same electronegativity of cations, ΔGO=Mz+(o), in the octahedral sheets, an attempt is made to determine the electronegativity of cations in the brucitic sheet, ΔGO=Mz+(b). The results indicate that this prediction method compared to other determinations, gives values within 0.25% of the experimentally-estim ated values. The relationships between ΔGO=Mz+(clay) corresponding to the electronegativity of a cation in the interlayer, octahedral, tetrahedral or brucitic sites and known ΔGO=Mz+(aq) were thus determined, allowing the determination of the electronegativity of transition metal ions and trivalent ions in each of the four sites and consequently contribute to the prediction of Gibbs free energies of formation of different micas and chlorites. Examples are given for low-Fe clinochlore whose solubility is measured experimentally and the results appear excellent when compared with experimental values.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Aagard, P. and Jahren, J.S., (1992) Diagenetic illite–chlorite assemblages in arenites. II Thermodynamic relations Clays and Clay Minerals 40 547554 10.1346/CCMN.1992.0400508.CrossRefGoogle Scholar
Aja, S.U. and Small, J.S., (1999) The solubility of a low-Fe clinochlore between 25 and 175 degrees C and Pv=P(H2O) European Journal of Mineralogy 11 829842 10.1127/ejm/11/5/0829.CrossRefGoogle Scholar
Baes, C.F. and Mesmer, R.E., (1976) The Hydrolysis of Cations New York Wiley Interscience 496 pp.Google Scholar
Barin, I., (1985) Thermochemical Data of Pure Substances, parts 1 and 2 Germany Verlagsgesellschaft mbH V.C.H. 1600 pp.Google Scholar
Chatterjee, N.D. Kruger, R. Haller, G. and Olbricht, W., (1998) The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams Contributions to Mineralogy and Petrology 133 149168 10.1007/s004100050444.CrossRefGoogle Scholar
Chermak, J.A. and Rimstidt, J.D., (1989) Estimating the thermodynamic properties (ΔGo f and ΔHØ f) of silicate minerals at 298 K from the sum of polyhedral contributions American Mineralogist 74 1023 1031.Google Scholar
Cox, J.D. Wagman, D.D. and Medvedev, V.A., (1989) Codata Key Values for Thermodynamics New York Hemisphere Publishing Corp. 271 pp.Google Scholar
Diakonov, I.I. Pokrovski, G.S. Schott, J. Castet, S. and Gout, R., (1996) An experimental and computational study of sodium-aluminum complexing in crustal fluids Geochimica et Cosmochimica Acta 60 197211 10.1016/0016-7037(95)00403-3.CrossRefGoogle Scholar
El-Din, A. and El-Shazly, K., (1996) Petrology of Fe-Mg-carpholite-bearing metasediments from NE Oman — Reply Journal of Metamorphic Geology 14 386 397.Google Scholar
Gartner, L., (1979) Relations entre enthalpies ou enthalpies libres de formation des ions, des oxydes et des composés de formule MmNnOz Utilisation des frequences de vibration dans l’infra-rouge France Univ. Strasbourg 193 pp.Google Scholar
Holland, T.J.B. and Powell, R., (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2 Journal of Metamorphic Geology 8 89124 10.1111/j.1525-1314.1990.tb00458.x.CrossRefGoogle Scholar
Holland, T.J.B. Baker, J. and Powell, R., (1998) Mixing properties and activity-composition relationships of chlorites in the system MgO–FeO–Al2O3—Fe2O3–SiO2–H2O European Journal of Mineralogy 10 395406 10.1127/ejm/10/3/0395.CrossRefGoogle Scholar
Johnson, J.W. Oelkers, E.H. and Helgeson, H.C., (1992) SUPCRT 92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0°C to 1000°C Computer Geosciences 18 899947 10.1016/0098-3004(92)90029-Q.10.1016/0098-3004(92)90029-QCrossRefGoogle Scholar
Kittrick, J.A., (1982) Solubility of two high Mg and two high Fe chlorites using multiple equilibria Clays and Clay Minerals 30 167179 10.1346/CCMN.1982.0300302.CrossRefGoogle Scholar
Mader, U.K. Ramseyer, K. Daniels, E.J. and Althaus, E., (1996) Gibbs free energy of buddingtonite (NH4AlSi3O8) extrapolated from experiments and comparison to natural occurrences and polyhedral estimation European Journal of Mineralogy 8 755766 10.1127/ejm/8/4/0755.CrossRefGoogle Scholar
Martin, F., (1994) Etude cristallographique et cristallochimique de l’incorporation du germanium et du gallium dans les phyllosilicates. Approche par synthèse minérale France Université d’Aix Marseille 210 pp.Google Scholar
McPhail, D.C. Berman, R.G. and Greenwood, H.J., (1990) Experimental and theoretical constraints on aluminum substitution in magnesian chlorite, and a thermodynamic model for H2O in magnesian cordierite The Canadian Mineralogist 28 859 874.Google Scholar
Merceron, T. Vieillard, P.h. Fouillac, A.M. and Meunier, A., (1992) Hydrothermal alterations in the Echassires granitic cupola (Massif Central, France) Contributions to Mineralogy and Petrology 112 279292 10.1007/BF00310461.CrossRefGoogle Scholar
Mercury, L. Vieillard, P.h. and Tardy, Y., (2001) Thermodynamic of ice polymorphs and “Ice-like” water, in hydrates and hydroxides Applied Geochemistry 16 161181 10.1016/S0883-2927(00)00025-1.CrossRefGoogle Scholar
Miyano, T., (1981) Stability relations of ferri annite at Lower temperatures Annual Report, Institute of Geosciences, University of Tsukuba 8 95 96.Google Scholar
Nriagu, J.O., (1975) Thermochemical approximation for clay minerals American Mineralogist 60 834 839.Google Scholar
Parker, V.B. and Khodakovskii, I.L., (1995) Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron Journal of Physical Chemical Reference Data 24 16991745 10.1063/1.555964.CrossRefGoogle Scholar
Pauling, L., (1960) The Nature of the Chemical Bond 3rd New York Cornell University Press 430 pp.Google Scholar
Perchuk, L.L. Podlesskii, K.K. and Aranovich, L.Y., (1981) Calculation of thermodynamic properties of end member minerals from natural parageneses Thermodynamics of Minerals and Melts 1 111129 10.1007/978-1-4612-5871-1_6 Advances in Physical Geochemistry.CrossRefGoogle Scholar
Pokrovskii, V.A. and Helgeson, H.C., (1995) Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: The system Al2O3–H2O–NaCl American Journal of Science 295 12551342 10.2475/ajs.295.10.1255.CrossRefGoogle Scholar
Ponomareva, N.I. and Gordienko, V.V.A., (1991) Physico-chemical conditions of formation of lepidolites Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 120 31 39.Google Scholar
Robie, R.A. and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and higher temperature. US Geological Survey Bulletin, Washington D.C., 2131, 461 pp.Google Scholar
Saccocia, P.J. and Seyfried, W.E., (1993) A resolution of discrepant thermodynamic properties for chamosite retrieved from experimental and empirical techniques American Mineralogist 78 607 611.Google Scholar
Shock, E.L. and Helgeson, H.C., (1988) Calculation of the thermodynamic properties and transport properties of aqueous species and equation of state predictions to 5 kb and 1000°C Geochimica et Cosmochimica Acta 52 20092036 10.1016/0016-7037(88)90181-0.10.1016/0016-7037(88)90181-0CrossRefGoogle Scholar
Stoessell, R.K., (1984) Regular solution site mixing model for chlorites Clays and Clay Minerals 32 205212 10.1346/CCMN.1984.0320308.CrossRefGoogle Scholar
Sverjensky, D.A., (1985) The distribution of divalent trace elements between sulfides, oxides, silicates and hydrothermal solutions. I. Thermodynamic basis Geochimica et Cosmochimica Acta 49 853864 10.1016/0016-7037(85)90177-2.CrossRefGoogle Scholar
Sverjensky, D.A. Shock, E.L. and Helgeson, H.C., (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kbar Geochimica et Cosmochimica Acta 61 13591412 10.1016/S0016-7037(97)00009-4.10.1016/S0016-7037(97)00009-4CrossRefGoogle Scholar
Tardy, Y. and Duplay, J., (1992) A method of estimating the Gibbs free energies of formation of hydrated and dehydrated clays minerals Geochimica et Cosmochimica Acta 56 30073029 10.1016/0016-7037(92)90287-S.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R.M., (1976) Prediction of Gibbs energies of formation. I. Relationships among Gibbs energies of formation of hydroxides, oxides and aqueous ions Geochimica et Cosmochimica Acta 40 10511056 10.1016/0016-7037(76)90046-6.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R.M., (1977) Prediction of Gibbs energies of formation from the elements. II. Monovalent and divalent metal silicates Geochimica et Cosmochimica Acta 41 8792 10.1016/0016-7037(77)90189-2.CrossRefGoogle Scholar
Tardy, Y. and Gartner, L., (1977) Relationships among Gibbs energies of formation of sulfates, nitrates, carbonates, oxides and aqueous ions Contributions to Mineralogy and Petrology 63 89102 10.1007/BF00371678.CrossRefGoogle Scholar
Tardy, Y. and Vieillard, P.h., (1977) Relation among Gibbs free energies and enthalpies of formation of phosphates, oxides and aqueous ions Contributions to Mineralogy and Petrology 63 7588 10.1007/BF00371677.CrossRefGoogle Scholar
Varadachari, C. Kudrat, M. and Ghosh, K., (1994) Evaluation of standard free energies of formation of clay minerals by an improved regression method Clays and Clay Minerals 42 298307 10.1346/CCMN.1994.0420308.CrossRefGoogle Scholar
Vasil’ev, V.P. Vorob’ev, P.P. and Yashkova, V.I., (1986) Standard enthalpy of formation of titanium ion (4+) in aqueous solution at 298.15 Zhurnal Neorganiche Khimii 31 1869 1873.Google Scholar
Vidal, O., (1997) Experimental study of the thermal stability of pyrophyllite, paragonite, and clays in a thermal gradient European Journal of Mineralogy 9 123140 10.1127/ejm/9/1/0123.CrossRefGoogle Scholar
Vidal, O. Goffe, B. and Theye, T., (1992) Experimental study of the stability of sudoite and Magnesiancarpholite and calculation of a new petrogenetic grid for the system FeO-MgO-Al2O3–SiO2–H2O Journal of Metamorphic Geology 10 603614 10.1111/j.1525-1314.1992.tb00109.x.CrossRefGoogle Scholar
Vieillard, P.h.. (1982) () De Modèle de calcul des énergies de formation des minéraux bâti sur la connaissance affinée des structures cristallines. Sciences Géologiques Mémoire, 69, 206 pp.Google Scholar
Vieillard, P.h., (1994) Prediction of enthalpy of formation based on refined crystal structures of multisite compounds. 1. Theories and examples Geochimica et Cosmochimica Acta 58 40494063 10.1016/0016-7037(94)90266-6.CrossRefGoogle Scholar
Vieillard, P.h., (1994) Prediction of enthalpy of formation based on refined crystal structures of multisite compounds. 2. Application to minerals belonging to the system Li2O–Na2O–K2O–BeO–MgO–CaO–MnO–FeO–Fe2O3-–l2O3–SiO2–H2O. Results and discussion Geochimica et Cosmochimica Acta 58 4064 4107.CrossRefGoogle Scholar
Vieillard, P.h., (2000) A new method for the prediction of Gibbs free energies of formation of hydrated clay minerals based on the electronegativity scale Clays and Clay Minerals 48 459473 10.1346/CCMN.2000.0480406.CrossRefGoogle Scholar
Vieillard, P.h. and Tardy, Y., (1988) Estimation of enthalpies of formation of minerals based on their refined crystal structures American Journal of Science 288 9971040 10.2475/ajs.288.10.997.CrossRefGoogle Scholar
Vieillard, P.h. and Tardy, Y., (1988) Une nouvelle échelle d’électronégativité des ions dans les cristaux. Principe et méthode de calcul Comptes Rendus Académie Sciences Paris 306 423 428.Google Scholar
Vieillard, P.h. and Tardy, Y., (1989) Une nouvelle échelle d’électronégativité des ions dans les oxydes et les hydroxydes Comptes Rendus Académie Sciences Paris 308 1539 1545.Google Scholar
Walshe, J.L., (1986) A six component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems Economic Geology 81 681703 10.2113/gsecongeo.81.3.681.10.2113/gsecongeo.81.3.681CrossRefGoogle Scholar
Wilcox, D.E. and Bromley, L.A., (1963) Computer estimation of heat and free energy of formation for simple inorganic compounds Indian Engineering Chemistry 55 3239 10.1021/ie50643a006.CrossRefGoogle Scholar
Wolery, T.J. and Daveler, S.A. (1992) EQ 3/6, a software package for geochemical modeling of aqueous systems. Lawrence Livermore National Laboratory, UCRL-MA-110772 PT I-IV.CrossRefGoogle Scholar
Zolotov, M.Y. Fegley, B. and Lodders, K., (1999) Stability of micas on the surface of Venus Planetary Space Science 47 245260 10.1016/S0032-0633(98)00079-8.10.1016/S0032-0633(98)00079-8CrossRefGoogle Scholar