Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-07T17:28:57.576Z Has data issue: false hasContentIssue false

A New Method for the Prediction of Gibbs Free Energies of Formation of Hydrated Clay Minerals Based on the Electronegativity Scale

Published online by Cambridge University Press:  28 February 2024

Philippe Vieillard*
Affiliation:
UMR-CNRS 6532 Hydrasa, 40 Ave du Recteur Pineau. 86022 POITIERS-Cedex, France
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new method for the prediction of Gibbs free energies of formation for hydrated clay minerals is proposed based on the parameter ΔGO= Mz+(clay) characterizing the oxygen affinity of the cation Mz+. The Gibbs free energy of formation from constituent oxides is considered as the sum of the products of the molar fraction of an oxygen atom bound to any two cations multiplied by the electronegativity difference defined by the ΔGO= Mz+(clay) between any two consecutive cations. The ΔGO= Mz+(clay) value, using a weighting scheme involving the electronegativity of a cation in a specific site (interlayer, octahedral, or tetrahedral) is assumed to be constant and can be calculated by minimization of the difference between experimental Gibbs free energies (determined from solubility measurements) and calculated Gibbs free energies of formation from constituent oxides. Results indicate that this prediction method compared to other determinations, gives values within 0.5% of the experimentally estimated values. The relationships between ΔGO= Mz+(clay) corresponding to the electronegativity of a cation in either interlayer or octahedral sites and known ΔGO= Mz+(aq) were determined, thereby allowing the prediction of the electronegativity of transition metal ions and trivalent ions in hydrated interlayer sites and octahedral sites. Prediction of Gibbs free energies of formation of any clay mineral with various ions located in the interlayer and with different cations in octahedral sites is possible. Examples are given for Al-rich montmorillonite from Aberdeen, transition element-exchanged montmorillonite, and Ni-rich stevensite, and the results appear excellent when compared to experimental values.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Aja, S.U., 1995 Thermodynamic properties of some 2:1 layer clay minerals from solution-equilibration data European Journal of Mineralogy 7 325333 10.1127/ejm/7/2/0325.CrossRefGoogle Scholar
Barin, I., 1985 Thermochemical Data of Pure Substances, part 1 and 2 .Google Scholar
Benson, L.V., 1982 A tabulation and evaluation of ion exchange data on smectites Environmental Geology 4 2329 10.1007/BF02380496.CrossRefGoogle Scholar
Bruggenwert, M.G.M. Kamphorst, A. and Holt, G.H., 1979 Survey of experimental information on cation exchange in soil systems Soil Chemistry B, Physico-Chemical Models Amsterdam Elsevier 141203 10.1016/S0166-2481(08)70660-3.CrossRefGoogle Scholar
Carson, C.D. Kittrick, J.A. Dixon, J.B. and McKee, T.R., 1976 Stability of soil smectite from a Houston black clay Clays and Clay Minerals 24 151155 10.1346/CCMN.1976.0240401.CrossRefGoogle Scholar
Chermak, J.A. and Rimstidt, J.D., 1989 Estimating the thermodynamic properties (ΔGo f and ΔHo f) of silicate minerals at 298 K from the sum of polyhedral contributions American Mineralogist 74 10231031.Google Scholar
Codata Key Values for Thermodynamics (1989) Cox, J.D., Wagman, D.D. and Medvedev, V.A., eds., Hemisphere Publishing Corp., New York, 271 pp.Google Scholar
Decarreau, A., 1983 Etude experimentale de la cristallogenese des smectites. Mesure de coefficients de partage smectite trioctadrique-solution aqueuse pour les métaux M2 de la première série de transition Sciences Géologiques Mémoire 74 .Google Scholar
Gartner, L., 1979 Relations entre enthalpies ou enthalpies libres de formation des ions, des oxydes et des composés de formule MmNnOz. Utilisation des frequences de vibration dans l’infra-rouge .Google Scholar
Huang, W.H. and Keller, W.D., 1973 Gibbs free energies of formation calculated from dissolution data using specific mineral analyses. III. Clay minerals American Mineralogist 58 10231028.Google Scholar
Karathanasis, A.D. and Hajek, B.F., 1983 Transformation of smectite to kaolinite in naturally acid soil systems: Structural and thermodynamic considerations Soil Science Society of America Journal 47 158163 10.2136/sssaj1983.03615995004700010031x.CrossRefGoogle Scholar
Kittrick, J.A., 1971 Stability of montmorillonites. I. Belle Fourche and Clay Spur montmorillonite Soil Science Society of America Proceedings 35 140145 10.2136/sssaj1971.03615995003500010040x.CrossRefGoogle Scholar
Kittrick, J.A., 1971 Stability of montmorillonites. II. Aberdeen montmorillonite Soil Science Society of America Proceedings 35 820823 10.2136/sssaj1971.03615995003500050050x.CrossRefGoogle Scholar
Kittrick, J.A., 1973 Mica derived vermiculites as unstable intermediates Clays and Clay Minerals 21 479488 10.1346/CCMN.1973.0210608.CrossRefGoogle Scholar
Martynov, A.I. and Batsanov, S.S., 1980 A new approach to the determination of the electronegativity of atoms Russian Journal of Inorganic Chemistry 25 17371739.Google Scholar
Mattigod, S.V. and Kittrick, J.A., 1979 Aqueous solubility studies of muscovite: Apparent nonstoichiometric solute activities at equilibrium Soil Science Society of America Proceedings 43 180187 10.2136/sssaj1979.03615995004300010035x.CrossRefGoogle Scholar
Mattigod, S.V. and Sposito, G., 1978 Improved method for estimating the standard free energies of formation (ΔGo f 298.15) of smectites Geochimica et Cosmochimica Acta 42 17531762 10.1016/0016-7037(78)90232-6.CrossRefGoogle Scholar
Mercury, L. Vieillard, P.h. and Tardy, Y., 2000 “Ice-like” water, a key for hydration processes: Thermodynamic, definition and implications for quantitative geochemistry Applied Geochemistry .Google Scholar
Misra, U.K. and Upchurch, W.J., 1976 Free energy of formation of beidellite from apparent solubility measurements Clays and Clay Minerals 24 327331 10.1346/CCMN.1976.0240609.CrossRefGoogle Scholar
Mulliken, R.S., 1934 A new electronegativity scale: Together with data on valence and on valence ionization potentials and electron affinities The Journal of Chemical Physics 2 783793.CrossRefGoogle Scholar
Nriagu, J.O., 1975 Thermochemical approximation for clay minerals American Mineralogist 60 834839.Google Scholar
Parker, V.B. and Khodakovskii, I.L., 1995 Thermodynamic properties of the aqueous ions (2 and 3) of iron and the key compounds of iron Journal of Physical Chemical Reference Data 24 16991745 10.1063/1.555964.CrossRefGoogle Scholar
Pauling, L., 1960 The Nature of the Chemical Bond, 3rd edition New York Cornell University Press.Google Scholar
Peryea, F.J. and Kittrick, J.A., 1986 Experimental evaluation of two operational standard states for montmorillonite in metastable hydrolysis reactions Soil Science Society of America Journal 50 16131617 10.2136/sssaj1986.03615995005000060046x.CrossRefGoogle Scholar
Reesman, A.L., 1974 Aqueous dissolution studies of illite under ambient conditions Clays and Clay Minerals 22 443454 10.1346/CCMN.1974.0220511.CrossRefGoogle Scholar
Robie, R.A. and Hemingway, B.S., 1995 Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10 5 Pascals) Pressure and Higher Temperature .Google Scholar
Rosenberg, P.E. and Kittrick, J.A., 1990 Muscovite dissolution at 25°C: Implications for illite/smectite-kaolinite stability relations, conditions Clays and Clay Minerals 38 445447 10.1346/CCMN.1990.0380415.CrossRefGoogle Scholar
Rouston, R.C. and Kittrick, J.A., 1971 Illite solubility Soil Science Society of America Proceedings 35 714718 10.2136/sssaj1971.03615995003500050025x.Google Scholar
Shock, E.L. and Helgeson, H.C., 1988 Calculation of the thermodynamic properties and transport properties of aqueous species and equation of state predictions to 5kb and 1000°C Geochimica et Cosmochimica Acta 52 20092036 10.1016/0016-7037(88)90181-0.CrossRefGoogle Scholar
Sverjensky, D.A. Shock, E.L. and Helgeson, H.C., 1997 Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5kbar Geochimica et Cosmochimica Acta 61 13591412 10.1016/S0016-7037(97)00009-4.CrossRefGoogle Scholar
Tardy, Y., 1979 Relationships among Gibbs energies of formation of compounds American Journal of Science 279 217224 10.2475/ajs.279.2.217.CrossRefGoogle Scholar
Tardy, Y. and Duplay, J., 1992 A method of estimating the Gibbs free energies of formation of hydrated and dehydrated clays minerals Geochimica et Cosmochimica Acta 56 30073029 10.1016/0016-7037(92)90287-S.CrossRefGoogle Scholar
Tardy, Y. and Fritz, B., 1981 An ideal solid solution model for calculating solubility of clay minerals Clays and Clay Minerals 16 361373 10.1180/claymin.1981.016.4.05.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R.M., 1976 Prediction of Gibbs energies of formation. I. Relationships among Gibbs energies of formation of hydroxides, oxides and aqueous ions Geochimica et Cosmochimica Acta 40 10511056 10.1016/0016-7037(76)90046-6.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R.M., 1977 Prediction of Gibbs energies of formation from the elements. II. Monovalent and divalent metal silicates Geochimica et Cosmochimica Acta 41 8792 10.1016/0016-7037(77)90189-2.CrossRefGoogle Scholar
Tardy, Y. and Gartner, L., 1977 Relationships among Gibbs energies of formation of sulfates, nitrates, carbonates, oxides and aqueous ions Contributions to Mineralogy and Petrology 63 89102 10.1007/BF00371678.CrossRefGoogle Scholar
Tardy, Y. and Vieillard, P.h., 1977 Relation among Gibbs free energies and enthalpies of formation of phosphates, oxides and aqueous ions Contributions to Mineralogy and Petrology 63 7588 10.1007/BF00371677.CrossRefGoogle Scholar
Tardy, Y. Cheverry, C. and Fritz, B., 1974 Néoformation d’une argile megnésienne dans les dépressions interdunaires du lac Tchad. Application aux domaines de stabilité des phyllosilicates alumineux, magnésiens et férrifères Comptes Rendus Académie Sciences Paris 178D 19992002.Google Scholar
Tardy, Y. Trescases, J.J. and Fritz, B., 1974 Evaluation de l’enthalpie libre de formation de montmorillonites ferrifères Comptes Rendus Académie Sciences Paris 16651668.Google Scholar
Tardy, Y. Duplay, J. Fritz, B., Rodriguez Clemente, R. and Fenoll Hach-Ali, P., 1987 Stability 0elds of smectites and illites as a function of temperature and chemical composition Proceedings International Meeting on Geochemistry of the Earth Surface and Processes of Mineral Formation 461494.Google Scholar
Vieillard, P.h., 1978 Géochimie des phosphates. Etude thermodynamique, application à la génèse et à l’altération des apatites Sciences Géologiques Mémoire 51 .Google Scholar
Vieillard, P.h., 1982 Modèle de calcul des énergies de formation des minéraux bâti sur la connaissance affinée des structures cristallines Sciences Géologiques Mémoire 69 .Google Scholar
Vieillard, P.h., 1994 Prediction of enthalpy of formation based on refined crystal structures of multisite compounds. 1. Theories and examples Geochimica et Cosmochimica Acta 58 40494063 10.1016/0016-7037(94)90266-6.CrossRefGoogle Scholar
Vieillard, P.h., 1994 Prediction of enthalpy of formation based on refined crystal structures of multisite compounds. 2. Application to minerals belonging to the system Li2O-Na2O-K2O-BeO-MgO-CaO-MnO-FeO-Fe2O3-Al2O3-SiO2-H2O. Results and discussion Geochimica et Cosmochimica Acta 58 40644107.CrossRefGoogle Scholar
Vieillard, P.h. and Tardy, Y., 1988 Estimation of enthalpies of formation of minerals based on their refined crystal structures American Journal of Science 288 9971040 10.2475/ajs.288.10.997.CrossRefGoogle Scholar
Vieillard, P.h. and Tardy, Y., 1988 Une nouvelle echelle d’électronégativité des ions dans les cristaux. Principe et méthode de calcul Comptes Rendus Académie Sciences Paris 306 423428.Google Scholar
Vieillard, P.h. and Tardy, Y., 1989 Une nouvelle échelle d’électronégativité des ions dans les oxydes et les hydroxydes Comptes Rendus Académie Sciences Paris 308 15391545.Google Scholar
Weaver, R.M. Jackson, M.L. and Syers, J.K., 1971 Magnesium and silicon activities in matrix solutions of montmorillonite-containing soils in relation to clay mineral stability Soil Science Society of America Proceedings 35 823830 10.2136/sssaj1971.03615995003500050051x.CrossRefGoogle Scholar
Weaver, R.M. Jackson, M.L. and Syers, J.K., 1976 Clay mineral stability as related to activities of aluminium, silicon, and magnesium in matrix solution of montmorillonite-containing soils Clays and Clay Minerals 24 246252 10.1346/CCMN.1976.0240506.CrossRefGoogle Scholar
Wilcox, D.E. and Bromley, L.A., 1963 Computer estimation of heat and free energy of formation for simple inorganic compounds Indian Engineering Chemistry 55 3239 10.1021/ie50643a006.CrossRefGoogle Scholar
Wolery, T.J. and Daveler, S.A., 1992 EQ 3/6, A software package for geochemical modeling of aqueous systems. Lawrence Livermore National Laboratory .CrossRefGoogle Scholar