Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T16:13:55.599Z Has data issue: false hasContentIssue false

The Nature of Cation-Substitution Sites in Phyllosilicates

Published online by Cambridge University Press:  02 April 2024

William F. Bleam*
Affiliation:
Soil Science Department, University of Wisconsin, Madison, Wisconsin 53706
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A fundamental property of electrostatic potentials is their additivity. This study demonstrates that the electrostatic potential of a negatively charged, cation-substituted phyllosilicate layer can be represented as the sum of two potentials. Viewing cation substitution as a defect, one potential is derived from the atoms in a charge-neutral, unsubstituted layer such as pyrophyllite or talc. The “neutral-layer” potential rapidly decays to zero with distance from the layer and is determined primarily by the atoms in the first two atomic planes parallel to the (001) surface, i.e., the basal oxygens and tetrahedral cations. The second component, characterized as a “defect” potential, is a long-range potential derived from cation-substitution. The model used to compute the electrostatic potentials, a two-dimensional Ewald lattice sum, represents the atoms of a single phyllosilicate layer as point charges.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

References

Bailey, S. W., 1975 Cation ordering and pseudosymmetry in layer silicates Amer. Mineral. 60 175187.Google Scholar
Banos, J. O., 1985 Interlayer energy for partial slip and cleavage in muscovite Philos. Mag. A 52 145152.CrossRefGoogle Scholar
Bertaut, E. F., 1978 Electrostatic potentials, fields and field gradients J. Phys. Chem. Solids 39 97102.CrossRefGoogle Scholar
Bleam, W. F. and Hoffmann, R., 1988 Isomorphous substitution in phyllosilicates as an electronegativity perturbation: Its effect on bonding and charge distribution Phys. Chem. Minerals 15 398408.CrossRefGoogle Scholar
Bolt, G. H. and Bolt, G. H., 1979 The ionic distribution in the diffuse double layer Soil Chemistry B. Physico-Chemical Models Amsterdam Elsevier 125.Google Scholar
Brown, I. D., 1978 Bond valences—A simple structural model for inorganic chemistry Chem. Soc. Rev. 7 359376.CrossRefGoogle Scholar
Conard, J., Estrade-Szwarckopf, H., Dianoux, A. J. and Poin-signon, C., 1984 Water dynamics in a planar lithium hydrate in the interlayer space of a swelling clay. A neutron scattering study J. Phys. 45 13611371.CrossRefGoogle Scholar
Fanner, V. C., Greenland, D. J. and Hayes, M. H. B., 1978 Water on particle surfaces The Chemistry of Soil Constituents New York Wiley 405448.Google Scholar
Farmer, V. C. and Russell, J. D., 1971 Interlayer complexes in layer silicates. The structure of water in lamellar ionic solutions Trans. Faraday Soc. 67 27372749.CrossRefGoogle Scholar
Foot, J. D. and Colburn, E. A., 1988 Electrostatic potentials for surfaces of inorganic and molecular crystals J. Mol. Graphics 6 9399.CrossRefGoogle Scholar
Fripiat, J. G., Lucas, A. A., André, J. M. and Derouane, E. G., 1977 On the stability of polar surface planes of macroscopic ionic crystals Chem. Phys. 21 101104.CrossRefGoogle Scholar
Fripiat, J. J., Kadi-Hanifi, M., Conard, J., Stone, W. E. E., Fraissard, J. P. and Resing, H. A., 1980 NMR study of adsorbed water—III. Molecular orientation and protonic motions in the one-layer of a Li hectorite Magnetic Resonance in Colloid and Interface Science Boston Reidel 529535.Google Scholar
Giese, R. F., Bradley, W. F. and Bailey, S. W., 1979 Hydroxyl orientations in 2:1 phyllosilicates Clays and Clay Minerals, Proc. 13th Natl. Conf, Madison, Wisconsin, 1964 New York Pergamon Press 105144.Google Scholar
Giese, R. F., 1984 Electrostatic energy models of micas Rev. Mineral. 13 105144.Google Scholar
Heyes, D. M. and van Swol, F., 1981 The electrostatic potential and field in the surface region of lamina and semi-infinite point charge lattices J. Chem. Phys. 75 50515058.CrossRefGoogle Scholar
Hoffmann, R., 1963 An extended Hiickel theory. I. Hydrocarbons J. Chem. Phys. 39 13971412.CrossRefGoogle Scholar
Hoffmann, R. and Lipscomb, W. N., 1962 Theory of polyhedral molecules. I. Physical factorizations of the secular equation J. Chem. Phys. 36 21792189.CrossRefGoogle Scholar
Jenkins, H. D. B. and Hartman, P., 1979 A new approach to the calculation of electrostatic energy relations in minerals: The dioctahedral and trioctahedral phyllosilicates Philos. Trans. Royal Soc. London Ser. A 293 169208.Google Scholar
Jenkins, H. D. B. and Hartman, P., 1980 Application of a new approach to the calculation of electrostatic energies of expanded di- and trioctahedral micas Phys. Chem. Minerals 6 313325.Google Scholar
Jenkins, H. D. B. and Hartman, P., 1982 Calculations on a model intercalate containing a single layer of water molecules: A study of potassium vermiculite, K2lMg6-(Si4_xAlJ2O20(OH)4, for 1 < × < 0 Philos. Trans. Royal Soc. London Ser. A 304 397446.Google Scholar
Kittel, C., 1986 Introduction to Solid State Physics 6th New York Wiley.Google Scholar
Kjellander, R. and Marcelja, S., 1985 Polarization of water between molecular surfaces: A molecular dynamics study Chemica Scripta 25 7380.Google Scholar
Lee, J. J. and Guggenheim, S., 1981 Single crystal x-ray refinement of pyrophyllite-17c Amer. Mineral. 66 350357.Google Scholar
Lee, W. W. and Choi, S.-I., 1980 Determination of the Madelung potential of ionic crystals with a polar surface by the Ewald method J. Chem. Phys. 72 61646168.CrossRefGoogle Scholar
Low, P. F. and Swineford, A., 1962 Influence of adsorbed water on exchangeable ion movement Clays and Clay Minerals, Proc. 9th Natl. Conf, West Lafayette, Indiana, 1960 New York Pergamon Press 219228.Google Scholar
Mathieson, A McL and Walker, G. F., 1954 Crystal structure of magnesium-vermiculite Amer. Mineral. 39 231255.Google Scholar
McBride, M. B., Dixon, J. B. and Weed, S. B., 1989 Surface chemistry of soil minerals Minerals in Soil Environments 2nd Madison, Wisconsin Soil Science Society of America 3587.Google Scholar
Odom, I. E., 1984 Smectite clay minerals: Properties and uses Philos. Trans. Royal Soc. London Ser. A 311 391409.Google Scholar
Parry, D. E., 1975 The electrostatic potential in the surface region of an ionic crystal Surface Sci. 49 433440.CrossRefGoogle Scholar
Parry, D. E., 1976 Errata: The electrostatic potential in the surface region of an ionic crystal Surface Sci. 54 195.Google Scholar
Pauling, L., 1929 The principles determining the structure of complex ionic crystals J. Amer. Chem. Soc. 51 10101026.CrossRefGoogle Scholar
Perdikatsis, B. and Burzlaff, H., 1981 Strukturverfeinerung am Talk Mg3[(OH)2Si4O10] Z. Kristallogr. 156 177186.Google Scholar
Prost, R. and Bailey, S. W., 1975 Interactions between adsorbed water molecules and the structure of clay minerals: Hydration mechanism of smectites Proc. Int. Clay Conf, Mexico City, 1975 Illinois Applied Publishing, Wilmette 351359.Google Scholar
Shirozu, H. and Bailey, S. W., 1966 Crystal structure of a two-layer Mg-vermiculite Amer. Mineral. 51 11241143.Google Scholar
Slade, P. G., Stone, P. A. and Radoslovich, E. W., 1985 Interlayer structures of the two-layer hydrates of Na- and Ca-vermiculites Clay & Clay Minerals 33 5161.CrossRefGoogle Scholar
Smith, E. R., 1983 Electrostatic potential at a plane surface of a point ionic crystal Physica 120A 327338.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford University Press.Google Scholar
Sposito, G., 1989 Surface reactions in natural aqueous colloidal systems Chimia 43 169176.Google Scholar
Sposito, G. and Prost, R., 1982 Structure of adsorbed water on smectites Chem. Rev. 82 553573.CrossRefGoogle Scholar
Veitch, L. G. and Radoslovich, E. W., 1963 The cell dimensions and symmetry of layer-lattice silicates. III. Octahedral ordering Amer. Mineral. 48 6275.Google Scholar
Watson, R. E., Davenport, J. W., Perlman, M. L. and Sham, T. K., 1981 Madelung effects at crystal surfaces: Implications for photoemission Phys. Rev. B 24 17911797.CrossRefGoogle Scholar
Weiss, Z., Rieder, M., Chmielova, M. and Krajicek, J., 1985 Geometry of the octahedral coordination in micas: A review of refined structures Amer. Mineral. 70 747757.Google Scholar
Whangbo, M.-H. Hoffmann, R. and Woodward, R. B., 1979 Conjugated one and two dimensional polymers Proc. Royal Soc. London Ser. A 366 2346.Google Scholar