Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T19:47:23.178Z Has data issue: false hasContentIssue false

Natural and Synthetic Copper Phyllosilicates Studied by XPS

Published online by Cambridge University Press:  28 February 2024

Christine Mosser
Affiliation:
Centre de Géochimie de la Surface, CNRS, 1 rue Blessig 67084 Strasbourg, France
Aimé Mosser
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France
Michelangelo Romeo
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France
Sabine Petit
Affiliation:
Laboratoire de Pétrologie de la Surface, URA 721 du CNRS, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Alain Decarreau
Affiliation:
Laboratoire de Pétrologie de la Surface, URA 721 du CNRS, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray photoelectron spectroscopy (XPS) has been used to characterize the bonding state of Cu2+, Si4+, Al3+, and O2− ions in structural (octahedral and interlamellar) or adsorbed position in phyllosilicates. Five smectites, 5 kaolinites, and 1 chrysocolla with Cu(II) in known positions (octahedral, interlamellar, or surface adsorbed) have been investigated. Their spectra were compared with those of pure Cu metal and of pure Cu(I) and Cu(II) oxides.

The line for Cu 2p3/2 (binding energy of 935.4 eV) and well-defined shake-up lines (binding energy of about 943 eV) observed after 1 hr of X-ray irradiation are characteristic of Cu(II) in phyllosilicate octahedral sites. But due to the photoreduction effect, they show Cu(I) oxidation states (Cu 2p3/2, binding energy of 933.2 eV and near absence of shake-up lines) for the phyllosilicates with adsorbed Cu or in interlamellar positions. The kinetics of photoreduction distinguishes octahedral from interlamellar positions, and the latter from a surface adsorbed position. The enlargement of the FWHM (full width at half maximum) of XPS lines has been used to describe crystallochemical parameters linked to local ordering around the probe cations. Crystallization produces decreasing O 1 s and Cu 2p (octahedral cation) line widths but has no effect on the Si 2p (tetrahedral cation) line width. The enlargement of FWHM for all ion lines of the lattice is linked to the nature (Cu > Mg > Al) and the number and amount of structural cations in the phyllosilicates.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Asbrink, S. and Norrby, L. J., 1970 A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional E.s.d.’s Acta Cryst. B26 8 815 10.1107/S0567740870001838.CrossRefGoogle Scholar
Canesson, P. and Fripiat, J. J., 1982 E.S.C. A. studies of clay minerals Dev. Sedimentol. 211226.CrossRefGoogle Scholar
Carrière, B. and Deville, J. P., 1977 X-ray photoelectron study of some silicon-oxygen compounds J. Electron Spectrosc. Relat. Phenom. 10 8591 10.1016/0368-2048(77)85006-8.CrossRefGoogle Scholar
Creach, M., 1988 Accumulation supergène de cuivre en milieu latéritique: Etude pétrologique, cristallochimique et géochimique de l’altération du skarn de Santa Blandina (Itapeva, Bresil) France Univ. Poitiers.Google Scholar
Decarreau, A., 1985 Partitioning of divalent transition element between octahedral sheet of trioctahedral smectites and water Geochim. Cosmochim. Acta 49 15371544 10.1016/0016-7037(85)90258-3.CrossRefGoogle Scholar
Frost, D. C., Ishitani, A. and McDowell, C. A., 1972 X-ray photoelectron spectroscopy for copper compounds Mol. Phys. 24 861877 10.1080/00268977200101961.CrossRefGoogle Scholar
Hochella, M. F. and Brown, G. E. Jr., 1988 Aspects of silicate surface and bulk structure analysis using X-ray photoelectron spectroscopy (XPS) Geochim. Cosmochim. Acta 52 16411648 10.1016/0016-7037(88)90232-3.CrossRefGoogle Scholar
Hochella, M. F. and Carim, A. H., 1988 A reassessment of electron escape depth in silicon and thermally grown silicon dioxide thin films Surface Sci. Lett. 197 L260L268 10.1016/0039-6028(88)90625-5.CrossRefGoogle Scholar
Huntress, W. T. and Wilson, L., 1972 An ESCA study of lunar and terrestrial materials Earth Planet. Sci. Lett. 15 5964 10.1016/0012-821X(72)90029-5.CrossRefGoogle Scholar
Koppelman, M. H. and Dillard, J. D., 1977 A study of the adsorption of Ni(II) and Cu(II) by clay minerals Clays & Clay Minerals 25 457462 10.1346/CCMN.1977.0250612.CrossRefGoogle Scholar
Mosser, A., Romeo, M., Parlebas, J. C., Okada, K. and Kotani, A., 1991 Photoemission on 2p core levels of copper: An experimental and theoretical investigation of the reduction of copper monoxides Solid State Communication 918 641644 10.1016/0038-1098(91)90605-U.CrossRefGoogle Scholar
Mosser, C., Mestdagh, M., Decarreau, A. and Herbillon, A., 1990 Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites Clay Miner. 25 271282 10.1180/claymin.1990.025.3.03.CrossRefGoogle Scholar
Mosser, C., Petit, S., Parisot, J. C., Decarreau, A. and Mestdagh, M., 1990 Evidence of Cu in octahedral layers of natural and synthetic kaolinites Chem. Geol. 84 281282 10.1016/0009-2541(90)90238-3.CrossRefGoogle Scholar
Onorato, P I K Alexander, M. N., Struck, C. W., Tasker, G. W. and Uhlmann, D. R., 1985 Bridging and nonbridging oxygen atoms in alkali aluminosilicate glasses J. Am. Ceram. Soc. 68 6 C148C150 10.1111/j.1151-2916.1985.tb15223.x.CrossRefGoogle Scholar
Petit, S., 1990 Etude cristallochimique de kaolinites ferrifères et cuprifères de synthèse (150-250°C) France Univ. Poitiers.Google Scholar
Rosencwaig, A., Wertheim, G. K. and Guggenheim, H. J., 1971 Origins of satellites on inner-shell photoelectron spectra Phys. Rev. Lett. 27 479481 10.1103/PhysRevLett.27.479.CrossRefGoogle Scholar
Seyama, H. and Soma, M., 1985 Bonding-state characterization of the constituent elements of silicate minerals by X-ray photoelectron spectroscopy J. Chem. Soc., Faraday Trans. 1 81 2 485495 10.1039/f19858100485.CrossRefGoogle Scholar
Seyama, H., and Soma, M., (1988) Application of X-ray photoelectron spectroscopy to the study of silicate minerals: in Kokiritsu Kogai Kenkyusho Kenkyu Hokoku (Research Report from the National Institute for Environmental Studies, Japan) 111, 125 pp.Google Scholar
Siegbahn, K., Nording, C. N., Fahlman, A., Nordberg, R., Hamrin, K., Hedman, J., Johansson, G., Bermark, T., Karlsson, S. E., Lindgren, I. and Lindgren, B., 1967 ESCA: Atomic, Molecular, and Solid State Structure Studied by Means of Electron Spectroscopy Uppsala Almqvist and Wiksells.Google Scholar
Stucki, J. W., Roth, C. B. and Baitinger, W. E., 1976 Analysis of iron-bearing clay minerals by electron spectroscopy for chemical analysis (ESCA) Clays & Clay Minerals 24 289292 10.1346/CCMN.1976.0240603.CrossRefGoogle Scholar
Urch, D. S. and Murphy, S., 1974 The relationship between bond lengths and orbital ionisation energies for a series of aluminosilicates J. of Electron Spectrosc. Relat. Phenom. 5 167171 10.1016/0368-2048(74)85009-7.CrossRefGoogle Scholar
Wallbank, B., Johnson, C. E. and Main, I. G., 1973 Multielectron satellites in core electron photoemission from 3d° ions in solids J. Phys. 6 L493L495.Google Scholar
Wyckoff, R. W. G., 1963 Crystal Structures 2nd ed. New York Interscience publishers, John Wiley and Sons.Google Scholar