Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T07:18:14.176Z Has data issue: false hasContentIssue false

A Natural 17Å Montmorillonite-Organic Complex from Alleppey, Kerala State-India

Published online by Cambridge University Press:  01 July 2024

Johan Moum*
Affiliation:
Forskningsveien 1, Oslo 3 - Tlf. 695880, Norway
Chatty N. Rao*
Affiliation:
Forskningsveien 1, Oslo 3 - Tlf. 695880, Norway
T. S. R. Ayyar*
Affiliation:
Forskningsveien 1, Oslo 3 - Tlf. 695880, Norway
*
*Norwegian Geotechnical Institute, Forskningsveien 1, Oslo 3, Norway.
Indian Institute of Technology, Kharagpur, West Bengal, India
College of Engineering, Trivandrum, Kerala State, India, on study leave at NGI, Oslo 3, Norway.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A black organic-rich alluvial clay from Alleppey, Kerala State, India, gave a well defined 17Å reflection in the natural untreated state. Ethylene glycol and heat treatments showed it to be essentially a smectite. Treatments with H2O2 and 0·1 N NaOH contracted the spacing to about 14Å, indicating that sorbed organic matter was responsible for the original enhanced spacing.

In the natural state, the clay was chiefly divalent with respect to the ions on its exchange sites and was at a pH of 6·2. Subsequent attempts to resorb the organic matter (which had been extracted from the clay by repeated NaOH treatments, converted to the H-form, concentrated and freeze-dried) into the interlamellar space of H2O2-treated clay proved successful only after the pH was brought down to 3•2 and the clay converted to an essentially monovalent state through repeated 1 N NaCl treatments.

Résumé

Résumé

Une argile alluviale noire riche en matière organique, provenant de Alleppey, Etat de Kerala, Indes, a donné une réflexion bien définie à 17 Å, à l’état naturel non traité. Le glycol éthylénique et les traitements thermiques ont montré qu’il s’agissait essentiellement d’une smectite. Les traitements à H2O2 et Na OH 0,1 N ont ramené l’espacement à 14 Å environ, ce qui indique que la matière organique fixée était responsable de l’espacement originel élevé pour un tel minéral.

A l’état naturel, l’argile était à pH 6,2 et ses sites d’échange étaient principalement saturés par des ions divalents. Les tentatives ultérieures destinées à fixer à nouveau la matière organique (qui avait été extraite de l’argile par des traitements répétés avec Na OH, puis convertie sous forme H, puis concentrée et lyophilisée) dans l’espace interfeuillet de l’argile traitée par H2O2, n’ont réussi qu’avec une argile amenée à pH 3,2 et convertie en une forme saturée essentiellement par des ions monovalents au moyen de traitements répétés par Cl Na 1 N.

Kurzreferat

Kurzreferat

Eine schwarzer, an organischer Substanz reicher, alluvialer Ton aus Alleppey, Staat Kerala, Indien, ergab im natürlichen, unbehandelten Zustand einen gut definierten 17 Å-Reflex. Äthylenglykol- und Wärmebehandlung zeigten, daß es sich im wesentlichen um einen Smectit handelt. Behandlungen mit H2O2 und 0,1 n NaOH verringern den Abstand auf 14 Å. Dies zeigt, daß sorbierte organische Substanz für den ursprünglich erhöhten Basisebenenabstand verantwortlich war.

Im natürlichen Zustand waren die Austauschplätze vorwiegend mit zweiwertigen Ionen abgesättigt. Der pH-Wert betrug 6,2. Anschließende Versuche, die organische Substanz (die vom Ton durch wiederholte Behandlung mit NaOH extrahiert, in die H-Form überführt, konzentriert und der Gefriertrocknung unterworfen worden war) wieder in die Zwischenschichten des H2O2-behandelten Tones einzulagern, erwiesen sich nur dann als erfolgreich, wenn zuvor der pH-Wert auf 3,2 herabgesetzt und der Ton durch wiederholte Behandlung mit 1 n NaCl im wesentlichen mit einwertigen Ionen belegt worden war.

Резюме

Резюме

В природном необработанном состоянии черная богатая органическими веществами наносная глина из Аллеппи, Штат Кэрала в Индии, дала отчетливое отражение 17 Å. Обработка этиленгликолем и термообработка показали, что эта глина по существу является смектитом. Обработка Н2O2 и 0,1 N NaOH сузило межслоевые промежутки до приблизительно 14 Å, что указывает на то, что первоначальные большие межслоевые промежутки были вызваны сорбированным органическим веществом. В природном состоянии глина является, главным образом, двухвалентной относительно ионного обмена и ее рН — 6,2. Дальнейшие попытки сорбировать органическое вещество (экстрагированное из глины обработкой NaOH и превращенное в форму-Н; концентрированную глину высушивали при температуре ниже 0°С) в межслоевой промежуток глины обработанной Н2O2 увенчалось успехом только после понижения рН до 3,2 и превращения глины в одновалентное состояние посредством повторных обработок с NaCl.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

Footnotes

§

Sample stored in the laboratory for two months before investigation.

References

Ayyar, T. S. R., (1969) Effect of environment on shear strength of sedimented alluvial organic clay Proc. 11th Annual Session of the Ind. Nat. Soc. of Soil Mech. and Foundation Engng. India Ahmedabad.Google Scholar
Brindley, G. W. (1961) Experimental Methods: X-Ray Identification and Crystal Structures of Clay Minerals. (Edited by Brown, G.), pp. 150. Mineralogical Society, London.Google Scholar
Greenland, D. J., (1965) Interaction between clays and organic compounds in soils—I. Mechanism of interaction between clays and defined organic compounds Soils and Fert. 28 412425.Google Scholar
Greenland, D. J., (1965) Interaction between clays and organic compounds in soils—II. Adsorption of soil organic compounds and its effect on soil properties Soils and Fert. 28 521532.Google Scholar
Greenland, D. J., (1971) Interactions between humic and fulvic acids and clays Soil Sci. 111 3441.CrossRefGoogle Scholar
Grim, R. E., (1962) Applied Clay Mineralogy New York McGraw-Hill.CrossRefGoogle Scholar
King, W., (1884) Considerations on the smooth water anchorages or mud banks of Narakkal and Alleppey on the Travancore Coast Geol. Surv. India. Records 17 1427.Google Scholar
King, L. H., (1967) Isolation and characterization of organic matter from glacial marine sediments on the Scotian Shelf: Bedford Institute of Oceanography Report No. 67-4 .Google Scholar
Kodama, H. and Schnitzer, M., (1968) Effects of inter-layer cations on the adsorption of a soil humic compound by Montmorillonite Soil Sci. 106 7374.CrossRefGoogle Scholar
MacEwan, D. M. C., (1962) Interlamellar reactions of clays and other substances Clays and Clay Minerals 9 431443.10.1016/B978-1-4831-9842-2.50034-1CrossRefGoogle Scholar
MacEwan, D. M. C., Amil, A. R. and Brown, G. (1961) Interstratified Clay Minerals: X-Ray Identification and Crystal Structures of Clay Minerals (Edited by Brown, G.) pp. 393445. Mineralogical Society, London.Google Scholar
Mortensen, J. L., (1965) Partial Extraction of Organic Matter: Methods of Soil Analysis, Part Madison, Wis. Am. Soc. Agron. 14011408.Google Scholar
Narain, J. and Ayyar, T. S. R., (1968) Measurement of soil structure Proc. Southeast Asian Regional Conference on Soil Engineering 5666.Google Scholar
Narain, J. and Ayyar, T. S. R., (1970) Variation of Atterberg limits in relation to strength properties of a highly plastic clay Indian National Society of Soil Mechanics and Foundation Engineering J. 9 117138.Google Scholar
Perez-Rodriguez, J. L. and Wilson, M. J., (1969) Effects of pretreatment on a 14Å swelling mineral from Gartly, Aberdeenshire Clay Minerals 8 3945.CrossRefGoogle Scholar
Rashid, M. A. and King, L. H., (1969) Molecular weight distribution measurements on humic and fulvic acid fractions from marine clays on the Scotian Shelf Geochim. Cosmochim. Acta. 33 147151.CrossRefGoogle Scholar
Rashid, M. A. and King, L. H., (1970) Major oxygen-containing functional groups present in humic and fulvic acid fractions isolated from contrasting marine environments Geochim. Cosmochim. Acta. 34 193201.CrossRefGoogle Scholar
Schnitzer, M. and Kodama, H., (1967) Reactions between a podzol fulvic acid and Na-montmorillonite Soil Sci. Soc. Am. Proc. 31 632636.CrossRefGoogle Scholar
Schnitzer, M. and Kodama, H., (1966) Montmorillonite: Effect of pH on its adsorption of a soil humic compound Science 153 7071.CrossRefGoogle ScholarPubMed
Schnitzer, M., (1969) Reactions between fulvic acid, a soil humic compound and inorganic soil constituents Soil Sci. Soc. Am. Proc. 33 7581.CrossRefGoogle Scholar
Warshaw, C. M. and Roy, R., (1961) Classification and a scheme for the identification of layer silicates Geol. Soc. Am. Bull. 72 14551499.CrossRefGoogle Scholar