Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T15:42:58.988Z Has data issue: false hasContentIssue false

Mössbauer Study of the Attenuation of Iron in an Irrigated Greensand Lysimeter

Published online by Cambridge University Press:  01 July 2024

C. A. M. Ross
Affiliation:
Institute of Geological Sciences, Atomic Energy Research Establishment Harwell, Oxfordshire, OX 11 0RA, United Kingdom
G. Longworth
Affiliation:
Nuclear Physics Division, Atomic Energy Research Establishment Harwell, Oxfordshire, OX 11 0RA, United Kingdom

Abstract

Fe57 Mössbauer spectroscopy has been used to determine the nature of iron-containing minerals in Lower Greensand samples from an experimental lysimeter at Uffington, Oxfordshire, both before and after a three-year irrigation with a synthetic heavy metal leachate. Analysis of the spectra measured at 300°, 77°, and 4.2°K and at 4.2°K in an applied field of 45 kOe shows that iron is present in the uncontaminated sandstone in fine-grained goethite (α-FeOOH) and glauconite. In the irrigated samples iron is precipitated as a fine-grained ferric hydroxide gel having values for the hyperfine field at 4.2°K of 435 and 470 kOe. The stability of the gel over the three-year period of irrigation may be explained by surface energy considerations.

Резюме

Резюме

Ре57 Моссбауеровская спектроскопия была использована для определения природы минералов, содержащих железо в образцах Нижнего Зеленого песчаника из экспериментального лизиметра в Аффингтоне, Оксфордшир, перед и после трех-летней ирригации синтетическим раствором тяжелого металла. Анализ спектров, замеренных при 300°, 77°, и 4,2°К и при 4,2°К в поле 45 кОе показывает, что железо присутствует в необработанном песчанике в мелко-зернистом гетите (α-РеООН) и глауконите. В ирригированных образцах железо осаждается в виде мелко-зернистого железно-гидроокисного геля, имеящего значения для сверхтонкого поля 435 и 470 кОе при 4,2°К. Устойчивость геля в течение трех-летнего периода ирригации можно объяснить, приняв во внимание поверхностную энергию. [N. R.]

Resümee

Resümee

Fe57 Mössbauer-Spektroskopie wurde verwendet, um die eisenhaltigen Minerale in Lower Greensand Proben aus einem Versuchslysimeter in Uffington, Oxfordshire, zu bestimmen. Die Untersuchung wurde sowohol vor als auch nach einer dreijährigen Irrigation mit einem synthetischen Schwer-metallauslaugprodukt durchgeführt. Die Auswertung der Spektren, die bei 300°, 77°, und 4,2°K sowie bei 4,2°K in einem angelegten Feld von 45 kOe gemessen wurden, zeigt, daß das Eisen in nicht verunreinigtem Sandstein in Form von feinkörnigem Goethit (α-FeOOH) und Glaukonit vorhanden ist. In den verunreinigten Proben ist das Eisen als feinkörniges Fe3+-Hydroxydgel gefallt, das für das Hyperfeinfeld Werte von 435 und 470 kOe bei 4,2°K hat. Die Stabilität des Gels über einen dreijährigen Zeitraum der Irrigation kann durch Überlegungen über die Oberflächenenergie erklärt werden. [U. W.]

Résumé

Résumé

La spectroscopie Mössbauer Fe57 a été utilisée pour déterminer la nature de minéraux contenant du fer provenant d’échantillons de Bas Greensand d'un lysimètre expérimental à Uffington, Oxfordshire, à la fois avant et après une irrigation de trois années avec un lourd lessivant synthétique. L'analyse des spectres mesurés à 300°, 77°, et 4,2°K et à 4,2°K dans un champ appliqué à 4,5 kOe montre que le fer est présent dans le grès non-contaminé dans la goethite à fins grains (α-FeOOH) et dans la glauconite. Dans les échantillons irrigés, le fer est précipité comme un gel hydroxide ferrique à fins grains ayant pour le champ hyperfin les valeurs 435 et 470 kOe à 4.2°K. La stabilité du gel pendant une période de trois ans peut être expliqué par des considérations d’énergie de surface. [D. J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bigham, J. M. Golden, D. C. Bowen, L. H. Buol, S. W. and Weed, S. B., (1978) Iron oxide mineralogy of well-drained ultisols and oxisols: I. Characterization of iron oxides in soil clays by Mössbauer spectroscopy, X-ray dif-fractometry, and selected chemical techniques Soil Sci. Soc. Amer. J. 42 816825.CrossRefGoogle Scholar
Black, J. H. Mather, J. D. Boreham, D. Bromley, J. Campbell, D. J. V. and Parker, A., (1976) Construction and instrumentation of lysimeters to study pollutant movement through unsaturated sand Paper 26, Proc. Water Res. Cen. Conf. Groundwater Quality, Measurement, Prediction and Protection, Reading 1976 .Google Scholar
Coey, J. M. D. and Readman, P. W., (1973) Characterization and magnetic properties of natural ferric gel Earth Planet. Sci. Lett. 21 4661.CrossRefGoogle Scholar
Feitknecht, W. and Schindler, P., (1963) Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solutions Pure Appl. Chem. 6 130199.CrossRefGoogle Scholar
Ferrier, A., (1966) Influence de l’état de division de la goethite et de l’oxyde ferrique sur leurs chaleurs de réaction Rev. Chim. Miner. 3 587615.Google Scholar
Follett, E. A. C., (1965) The retention of amorphous colloidal ferric hydroxide by kaolinites J. Soil Sci. 16 334341.CrossRefGoogle Scholar
Govaert, A. Dauwe, C. De Sitter, J. De Grave, E. and Rob-brecht, G., (1977) On the bulk and surface contributions to the magnetic hyperfine field of small particles of goethite (α-FeOOH) Physica 86–88B 14271428.Google Scholar
Gupta, S. K. and Chen, K. Y., (1975) Partitioning of trace metals in selective chemical fractions of nearshore sediments Environ. Lett. 10 129158.CrossRefGoogle ScholarPubMed
Hogg, C. S. Maiden, P. J. and Meads, R. E., (1975) Identification of iron-containing impurities in natural kaolinites using the Mössbauer effect Mineral. Mag. 40 8996.CrossRefGoogle Scholar
Jenne, E. A., (1968) Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides Trace Inorganics in Water, Advan. Chem. Ser. 73 337387.CrossRefGoogle Scholar
Jenne, E. A., Chappell, W. R. and Peterson, K. K., (1976) Trace element sorption Molybdenum in the Environment: the Biology of Molybdenum New York Marcel Dekker 425553.Google Scholar
Kinniburgh, D., (1974) Cation adsorption by hydrous metal oxides Ann Arbor, Michigan Publ. University Microfilms.Google Scholar
Langmuir, D., (1972) Controls on the amounts of pollutants in subsurface waters Earth and Mineral Sciences 42 913.Google Scholar
Langmuir, D. and Whittemore, D. O., (1972) Variations in the stability of precipitated ferric oxyhydroxides Non-equilibrium systems in natural water chemistry, Advan. Chem. Ser. 106 209234.CrossRefGoogle Scholar
Longworth, G. and Tite, M. S., (1977) Mössbauer and magnetic susceptibility studies of iron oxides in soils from archaeological sites Archaeometry 19 314.CrossRefGoogle Scholar
Mathalone, Z. Ron, M. and Biran, A., (1970) Magnetic ordering in iron gel Solid State Commun. 8 333336.CrossRefGoogle Scholar
Nalovic, L. Pedro, G. and Janot, C., (1976) Demonstration by Mössbauer spectroscopy of the role played by transitional trace elements in the crystallogenesis of iron (III) hydroxides Proc. Int. Clay Conf. 1975 Wilmette, Ill. Appl. Publ. Ltd. 601610.Google Scholar
Okamoto, S. Sekizawa, H. and Okamoto, S. I., (1972) Characterization and phase transformation of amorphous ferric hydroxide Reactivity of solids, 7th Int. Sym. Reactivity of Solids, Bristol 341353.Google Scholar
Ross, C. A. M. (1978) Extractive characterization of heavy metal distribution in contaminated Lower Greensand: Waste and Landfill Research Tech. Note 61, Department of the Environment, London, 32 pp.Google Scholar
Rozenson, I. and Heller-Kallai, L., (1977) Mössbauer spectra of dioctahedral smectites Clays & Clay Minerals 25 94101.CrossRefGoogle Scholar
Rozenson, I. and Heller-Kallai, L., (1978) Mössbauer spectra of glauconites re-examined Clays & Clay Minerals 26 173175.CrossRefGoogle Scholar
Shinjo, T., (1966) Mössbauer effect in antiferromagnetic fine particles J. Phys. Soc. Japan 21 917922.CrossRefGoogle Scholar
Towe, K. M. and Bradley, W. F., (1967) Mineralogical constitution of colloidal “hydrous ferric oxides” J. Colloid Interface Sci. 24 384392.CrossRefGoogle Scholar
van der Kraan, A. M. and van Loef, J. J., (1966) Superpara-magnetism in submicroscopic α-FeOOH particles observed by the Mössbauer effect Phys. Lett. 20 614616.CrossRefGoogle Scholar
Window, B., (1971) Hyperfine field distributions from Mössbauer spectra J. Sci. Instrumen. 4 401402.CrossRefGoogle Scholar