Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T16:19:56.089Z Has data issue: false hasContentIssue false

Mössbauer and Infrared Study of Heat-Treated Nontronite

Published online by Cambridge University Press:  28 February 2024

Michalis A. Karakassides
Affiliation:
Institute of Materials Science, NCSR “Demokritos”, 153 10 Ag., Paraskevi Attikis, Greece
Dimitris Gournis
Affiliation:
Institute of Materials Science, NCSR “Demokritos”, 153 10 Ag., Paraskevi Attikis, Greece
Thanassis Simopoulos
Affiliation:
Institute of Materials Science, NCSR “Demokritos”, 153 10 Ag., Paraskevi Attikis, Greece
Dimitris Petridis
Affiliation:
Institute of Materials Science, NCSR “Demokritos”, 153 10 Ag., Paraskevi Attikis, Greece
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Mössbauer and infrared spectra of Li- and Rb-saturated nontronites from Washington, USA (SWa-1), heat treated at different temperatures, were measured. The Mössbauer results show that diffusion of Li+ into the 2:1 layer by heat treatment at 250-300°C does not affect the magnetic hyperfine interactions of the octahedral iron centers. In contrast, significant changes were observed by calcination at temperatures >300°C for Li-saturated nontronites. The main features of the Mössbauer spectra recorded at different temperatures reveal superparamagnetic behavior with a blocking temperature of ~5 K. The superparamagnetic behavior is related to small magnetic domains created by partially broken Fe-O-Fe bonds upon heat treatment. The infrared spectra of Li-rich nontronite, heat treated at 300°C, show changes attributed to Li migration into the hexagonal cavities. Heating to higher temperatures, produced changes in the spectra of the Li- and Rb-saturated nontronites owing to the dehydroxylation of the layer structure. The dehydroxylation process begins with the loss of OH groups in the FeOHFe bridges and is completed with the disruption of the Al-O bonds at >600°C.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Ballet, O. and Coey, I.M.D., 1982 Magnetic properties of sheet silicates; 2:1 layer minerals. Physics and Chemistry of Minerals 8 218229 10.1007/BF00309481.CrossRefGoogle Scholar
Besson, G D l C C Rantureau, M T C Tsipursky, S.I. Drits, V.A., van Olphen, H. and Veniale, F., 1982 X-ray and electron diffraction study of the structure of Garfield nontronite Proceedings of the VII International Clay Conference Amsterdam Elsevier Science Publishers 2940.Google Scholar
Bødker, E. Mørup, S. Pedersen, H.S. Svedlindh, P. Jonsson, G.T. Garcia-Palacios, J.L. and Lazaro, E.J., 1998 Superparamagnetic relaxation in α-Fe particles. Journal of Magnetism and Magnetic Materials 177–181 925927 10.1016/S0304-8853(97)00782-8.CrossRefGoogle Scholar
Coey, J.M.D. Chukhrov, F.V. and Zvyagin, B.B., 1984 Cation distribution, Mössbauer spectra and magnetic properties of ferripyrophylite. Clays and Clay Minerals 32 198204 10.1346/CCMN.1984.0320307.CrossRefGoogle Scholar
Dickson, D.P.E. and Cardile, C.M., 1986 Magnetic ordering in a montmorillonite observed by 57Fe Mössbauer spectroscopy at 1.3K. Clays and Clay Minerals 34 103104 10.1346/CCMN.1986.0340114.CrossRefGoogle Scholar
Drits, V.A., Schultz, L.G. van Olphen, H. and Mumpton, F.A., 1987 Diffraction methods and structural features Proceedings of the International Clay Conference Indiana The Clay Mineral Society, Bloomington 3345.Google Scholar
Drits, V.A. Besson, G. and Muller, F., 1995 An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates. Clays and Clay Minerals 43 718731 10.1346/CCMN.1995.0430608.CrossRefGoogle Scholar
Farmer, V.C. and Russell, J.D., 1964 The IR spectra of layer silicates. Spectrochimica Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Gangas, N.H. Simopoulos, A. Kostikas, A. Yassogloy, N.J. and Fillipakis, S., 1973 Mössbauer studies of small particles of iron oxides in soil. Clays and Clay Minerals 21 151160 10.1346/CCMN.1973.0210303.CrossRefGoogle Scholar
Gangas, N.H. Van Wonterghem, J. Mørup, S. and Koch, C.J.M., 1985 Magnetic bridging in nontronite by intercalated iron. Journal of Physics C 18 L1011 1015 10.1088/0022-3719/18/31/007.CrossRefGoogle Scholar
Gangas, N.H. Bakas, T. Moukarika, A. Petridis, D. Simopoulos, A. and Setton, R., 1988 Magnetic ordering in nontronite pillared with Al-polyoxo cations Chemical Physics of Intercalation Holland D. Reidel, Dordrecht 485488.Google Scholar
Goodman, B.A., 1978 The Mössbauer spectra of nontronites: Consideration of an alternative assignment. Clays and Clay Minerals 26 176187 10.1346/CCMN.1978.0260215.CrossRefGoogle Scholar
Goodman, B.A. Russell, J.D. Fraser, A.R. and Woodhams, E.W.D., 1976 A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays and Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.CrossRefGoogle Scholar
Guggenheim, S. Schulze, W.A. Harris, G.A. and Lin, J.-C., 1983 Noncentric layer silicates: An optical second harmonic generation, chemical, and X-ray study Clays and Clay Minerals 31 251260 10.1346/CCMN.1983.0310402.CrossRefGoogle Scholar
Heller-Kallai, L. and Rozenson, I., 1980 Dehydroxylation of dioctahedral phyllosilicates. Clays and Clay Minerals 28 355368 10.1346/CCMN.1980.0280505.CrossRefGoogle Scholar
Hofmann, U. and Kiemen, R., 1950 Verlust der Austausch-fahigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift fur Anorganische und Allgemeine Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Karakassides, M.A. Petridis, D. and Gournis, D., 1997 Infrared reflectance study of thermally treated Li- and Cs-montmorillonites. Clays and Clay Minerals 45 649658 10.1346/CCMN.1997.0450504.CrossRefGoogle Scholar
Komadel, E. Lear, P.R. and Stucki, J.W., 1990 Reduction and reoxidation of nontronite: Extent of reduction and reaction rates. Clays and Clay Minerals 38 203208 10.1346/CCMN.1990.0380212.CrossRefGoogle Scholar
Lear, P.R. and Stucki, J.W., 1990 Magnetic properties and site occupancy of iron in nontronite. Clay Minerals 25 313 10.1180/claymin.1990.025.1.02.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Gates, W.P. and Komadel, P., 1996 Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents Clay Minerals 31 233241 10.1180/claymin.1996.031.2.09.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals 7 317327 10.1346/CCMN.1958.0070122.CrossRefGoogle Scholar
Mering, J. and Oberlin, A., 1967 Electron-optical study of smectites. Clays and Clay Minerals 15 325 10.1346/CCMN.1967.0150102.CrossRefGoogle Scholar
Mørup, S., Dumesic, J.A. and Topsoe, H. (1980) Applications of Mössbauer Spectroscopy, Volume II, Cohen, R.L., ed., Academic Press, New York, 153.Google Scholar
Russell, J.D. Goodman, B.A. and Fraser, A.R., 1979 Infrared and Mössbauer studies of reduced nontronites. Clays and Clay Minerals 27 6371 10.1346/CCMN.1979.0270108.CrossRefGoogle Scholar
Sakharov, B.A. Besson, G. Drits, V.A. Kameneva, M.Y. Salyn, A.L. and Smolyar, B.B., 1990 X-ray study of nature of stacking faults in the structure of glauconites. Clay Minerals 25 419435 10.1180/claymin.1990.025.4.02.CrossRefGoogle Scholar
Serratosa, J.M., 1960 Dehydration studies by IR spectroscopy. American Mineralogist 45 11011104.Google Scholar
Stubican, V. and Roy, R., 1961 A new approach to the assignment of IR absorption bands in layer silicates. Zeitschrift fur Kristallographie 115 200214 10.1524/zkri.1961.115.3-4.200.CrossRefGoogle Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction. Clay Minerals 19 177192 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
van der Woude, F. and Dekker, A.J., 1965 The relaxation between magnetic properties and the shape of Mössbauer spectra. Physica Status Solidi 9 775778 10.1002/pssb.19650090314.CrossRefGoogle Scholar