Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T18:49:35.285Z Has data issue: false hasContentIssue false

Morphology, Texture, and Microstructure of Halloysitic Soil Clays as Related to Weathering and Exchangeable Cation

Published online by Cambridge University Press:  28 February 2024

B. Delvaux
Affiliation:
Unité des Sciences du Sol, U.C.L., Place Croix du Sud, 2, bte 10, 1348 Louvain-la-Neuve, Belgium
D. Tessier
Affiliation:
INRA, Station de Science du Sol, Route de Saint-Cyr, 78026 Versailles Cedex, France
A. J. Herbillon
Affiliation:
Centre de Pédologie Biologique, UP6831 du CNRS, associée à l'Université de Nancy I, BP 5, 54501 Vandoeuvre-les-Nancy Cedex 1, France
G. Burtin
Affiliation:
Centre de Pédologie Biologique, UP6831 du CNRS, associée à l'Université de Nancy I, BP 5, 54501 Vandoeuvre-les-Nancy Cedex 1, France
Anne-Marie Jaunet
Affiliation:
INRA, Station de Science du Sol, Route de Saint-Cyr, 78026 Versailles Cedex, France
L. Vielvoye
Affiliation:
Section de Physico-chimie Minérale, MRAC, Place Croix du Sud, 1, 1348 Louvain-la-Neuve, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper aims at characterizing the morphology, texture, and microstructure of three hydrated kaolin rich clays (f < 0.2 μm) from volcanic soils. These clays represent a weathering sequence in which CEC, halloysite content with respect to kaolinite, as well as smectite content in the halloysite-smectite mixed-layer clays decrease with increased weathering. The clay samples were made homoionic (K+ or Mg2+) and hydrated under a low suction pressure (3.2 kPa). After replacing water by a resin, ultrathin sections were cut and examined by TEM. Particle shape varies with increased weathering, as follows: spheroids → tubes → platelets. Higher aggregation and dispersion are observed by TEM after Mg2+ and K+ saturation, respectively, at two levels of the clay-water system organization: intraparticle and interparticle. The microstructure variations induced by the nature of the exchangeable cation become less pronounced with decreasing layer charge of the 2:1 layers. They are thus related here to the presence of smectite layers localized in the halloysite habitus, mostly at the particle periphery. These results show that small amounts of smectite largely affect the organization of clays rich in kaolins at a high water content, and that K+ behaves here as a dispersing ion.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Anton, O. and Rouxhet, P. G., 1977 Note on the intercalation of kaolinite, dickite and halloysite by dimenthyl-sulfoxide Clays & Clay Minerals 25 259263 10.1346/CCMN.1977.0250402.CrossRefGoogle Scholar
Bailey, S. W., 1990 Halloysite—A critical assessment Proc. 9th Int. Clay Conf. Strasbourg, 1989 86 8998.Google Scholar
Bartoli, F., Burtin, G. and Herbillon, A. J., 1991 Disaggregation and clay dispersion of oxisols: Na resin, a recommended methodology Geoderma 49 307377 10.1016/0016-7061(91)90082-5.CrossRefGoogle Scholar
Ben Rhaïem, H., Pons, C. H., Tessier, D., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Factors affecting the microstructure of smectites: Role of cation and history of applied stress Proc. 8th Int. Clay Conf. Denver, 1985 Bloomington, Indiana The Clay Minerals Society 292297.Google Scholar
Blakemore, L. C., 1981 Acid oxalate extractable iron, aluminum, and silicon Circular letter n°5 Lower Hutt, New Zealand New Zealand Soil Bureau.Google Scholar
Churchman, G. I., Whitton, J. S., Claridge, G C C and Theng, B. K. G., 1984 Intercalation method for differentiating halloysite from kaolinite Clays & Clay Minerals 32 241248 10.1346/CCMN.1984.0320401.CrossRefGoogle Scholar
Delvaux, B., Herbillon, A. J. and Vielvoye, L., 1989 Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon. Taxonomic, mineralogical and agronomic implications Geoderma 45 375388 10.1016/0016-7061(89)90017-7.CrossRefGoogle Scholar
Delvaux, B., Herbillon, A. J., Dufey, J. E. and Vielvoye, L., 1990 Surface properties and clay mineralogy of hydrated halloysitic soil clays. I: Existence of interlayer K+ specific sites Clay Miner 24 617630 10.1180/claymin.1989.024.4.05.CrossRefGoogle Scholar
Delvaux, B., Herbillon, A. J., Vielvoye, L. and Mestdagh, M. M., 1990 Surface properties and clay mineralogy of hydrated halloysitic soil clays. II: Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays Clay Miner 25 141160 10.1180/claymin.1990.025.2.02.CrossRefGoogle Scholar
Delvaux, B., Herbillon, A. J., Dufey, J. E., Burtin, G. and Vielvoye, L., 1988 Adsorption sélective du potassium par certaines halloysites ( 10 Å) de sols tropicaux développés sur roches volcaniques. Signification minéralogique C.R. Acad. Sci. Paris 307 311317.Google Scholar
Dixon, J. B., Dixon, J. B. and Weed, S. B., 1989 Kaolin and serpentine group minerals Minerals in Soil Environments 467526.CrossRefGoogle Scholar
Farmer, V. C., 1964 The Infrared Spectra of Minerals London Mineralogical Society.Google Scholar
Kirkman, J. H., 1977 Possible structure of halloy site disks and cylinders observed in some New Zealand rhyolitic teph-ras Clay Miner 12 199216 10.1180/claymin.1977.012.3.03.CrossRefGoogle Scholar
Kirkman, J. H., 1981 Morphology and structure of halloy-site in New Zealand tephras Clays & Clay Minerals 29 19 10.1346/CCMN.1981.0290101.CrossRefGoogle Scholar
Kohyama, N., Fukushima, K. and Fukami, A., 1978 Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell Clays & Clay Minerals 26 2540 10.1346/CCMN.1978.0260103.CrossRefGoogle Scholar
Kohyama, N., Fukushima, K., Fukami, A., van Olphen, H. and Veniale, F., 1982 Interlayer hydrates and complexes of clay minerals observed by electron microscopy using an environmental cell Proc. 7th Int. Clay Conf. Bologna and Pavia, 1981 Amsterdam Elsevier 373384.Google Scholar
Mackenzie, R. C., 1952 A micromethod for determination of cation exchange capacity of clays Clay Miner. Bull 1 203205 10.1180/claymin.1952.001.7.03.CrossRefGoogle Scholar
Mehra, O. P. and Jackson, M. L., 1960 Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate Clays & Clay Minerals .Google Scholar
Nagasawa, K., Miyazaki, S. and Bailey, S. W., 1976 Mineralogical properties of halloysite as related to its genesis Proc. 6th Int. Conf. Mexico City, 1975 Illinois Wilmette 256265.Google Scholar
Parham, W. E., 1969 Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering Clays & Clay Minerals 17 1322 10.1346/CCMN.1969.0170104.CrossRefGoogle Scholar
Parker, T. W., 1969 A classification of kaolinites by infrared spectroscopy Clay Miner 8 135141 10.1180/claymin.1969.008.2.02.CrossRefGoogle Scholar
Quantin, P., 1990 Specficity of the halloysite-rich tropical or subtropical soils Transactions 14th International Congress of Soil Science, Kyoto, 1990 VII 1621.Google Scholar
Quantin, P., 1991 Les sols de l’archipel volcanique des Nouvelles-Hébrides (Vanuatu) .Google Scholar
Quantin, P., Gautheyrou, J. and Lorenzoni, P., 1988 Halloysite formation through in situ weathering of volcanic glass from trachytic pumices, Vico’s Volcano, Italy Clay Miner 23 423437 10.1180/claymin.1988.023.4.09.CrossRefGoogle Scholar
Rouiller, J., Burtin, G. and Souchier, B., 1972 La dispersion des sols dans l’analyse granulométrique. Méthode utilisant les résines échangeuses d’ions Bulletin ENSAIA Nancy XIV 193205.Google Scholar
Saigusa, M., Shoji, S. and Kato, T., 1978 Origin and nature of halloysite in Ando soils from Towada tephra, Japan Geoderma 20 115129 10.1016/0016-7061(78)90039-3.CrossRefGoogle Scholar
Tazaki, K., 1982 Analytical electron microscopic studies of halloysite formation processes. Morphology and composition of halloysite Proc. 7th Int. Clay Conf, Bologna and Pavia, 1981 27 573584.Google Scholar
Tessier, D., 1984 Etude expérimentale de l’organisation des matériaux argileux: Hydratation, gonflement et structuration au cours de la dessication et de la réhumectation .Google Scholar
Tessier, D., 1987 Identification of clays. Data from investigations with strongly hydrated systems Methodology in Soil-K Research, Proc. 20th Colloquium Int. Potash Institute Bern, Switzerland International Potash Institute 4563.Google Scholar
Tessier, D., 1990 Behaviour and microstructure of clay minerals Soil Colloids and Their Associations in Aggregates, Ghent, 1984 215 387415 10.1007/978-1-4899-2611-1_14.CrossRefGoogle Scholar
Tessier, D. and Berner, J., 1979 Utilisation de la microscopie électronique à balayage dans l’étude des sols. Observation de sols humides soumis à différents pF Science du Sol 1 6782.Google Scholar
Tessier, D., Pedro, G., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Mineralogical characterization of 2:1 clays in soils: Importance of the clay texture Proc. 8th Int. Clay Conf, Denver, 1985 Bloomington, Indiana The Clay Minerals Society 7884.Google Scholar
Touret, O., Pons, C. H., Tessier, D. and Tardy, Y., 1990 Etude de la répartition de l’eau dans des argiles saturées Mg2+ aux fortes teneurs en eau Clay Miner 25 217233 10.1180/claymin.1990.025.2.07.CrossRefGoogle Scholar