Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T04:08:21.587Z Has data issue: false hasContentIssue false

Morphology of Kaolinite Crystals Synthesized Under Hydrothermal Conditions

Published online by Cambridge University Press:  28 February 2024

Saverio Fiore
Affiliation:
Istituto di Ricerca sulle Argille, CNR, P.O. Box 27, 85050, Tito (PZ), Italy
F. Javier Huertas
Affiliation:
Estación Experimental del Zaidín, CSIC Profesor Albareda, 1, 18008 Granada, Spain
Francisco Huertas
Affiliation:
Estación Experimental del Zaidín, CSIC Profesor Albareda, 1, 18008 Granada, Spain
José Linares
Affiliation:
Estación Experimental del Zaidín, CSIC Profesor Albareda, 1, 18008 Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Scanning electron microscopy has revealed the presence of spherical, lath and platy kaolinite in gels with Si/Al atomic ratio ranging from 1.84 to 0.76 that are hydrothermally treated under different temperature and time conditions. Hemispherical structures and excavated zones, at different stages of evolution, have been observed on the surface of the gel grains, indicating that spherical particles do not precipitate from the solution but are generated from the gels. The quantity of spherical particles depends on temperature, time and the chemical composition of the starting gel. Products from starting material with Si/Al ≈ 1 yield the highest quantity of these particles. Being metastable, sphere dissolution controls the chemistry of the solution and consequently the morphology of the precipitating crystals thus producing more elongated, curved and irregular outlines when gels with Si/Al ≈ 1 are hydrothermally treated.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Cloos, P., Léonard, A. J., Moreau, J. P., Herbillon, A., and Fripiat, J. J. 1969. Structural organization in amorphous silico-aluminas. Clays & Clay Miner. 17: 279287.Google Scholar
De Kimpe, C., Gastuche, M. C., and Brindley, G. W. 1964. Low temperature synthesis of clay minerals. Am. Mineral. 49: 116.Google Scholar
Eggleton, R. A., 1987. Non crystalline Fe-Si-Al-oxyhydroxides. Clays & Clay Miner. 35: 2937.CrossRefGoogle Scholar
Eggleton, R. A., and Keller, J. 1982. The palagonitization of limburgite glass—A TEM study. N. Jb. Miner Mh. Jg. 1982: 321336.Google Scholar
Espiau, P., and Pedro, G. 1984. Comportement des ions aluminiques et de la silice en solution: etude de la formation de la kaolinite. Clay Miner. 19: 615627.Google Scholar
Fiore, S., 1993. The occurrences of smectite and illite in a pyroclastic deposit prior to weathering: Implications on the genesis of 2: 1 clay minerals in volcanic soils. Appl. Clay Sci. 8: 249259.Google Scholar
Huertas, F. J., 1991. Sintesis hidrotermal de caolinita. Estudio cinetico. Ph.D. thesis. University of Granada, 211 pp.Google Scholar
Huertas, F. J., Huertas, F., and Linares, J. 1993a. Hydrothermal synthesis of kaolinite: method and characterization of synthetic materials. Appl. Clay Sci. 7: 345356.CrossRefGoogle Scholar
Huertas, F. J., Huertas, F., and Linares, J. 1993b. A new approach to kinetics of kaolinite synthesis. Proc. 4th Int. Symposium on Hydrothermal Reaction. Nancy 1993. 8790.Google Scholar
Keller, W. D., 1976a. Scan electron micrograph of kaolins collected from diverse environments of origin—I. Clays & Clay Miner. 24: 107113.Google Scholar
Keller, W. D., 1976b. Scan electron micrograph of kaolins collected from diverse environments of origin—II. Clays & Clay Miner. 24: 114117.CrossRefGoogle Scholar
Lasaga, A. C., 1981. Rate laws of chemical reaction. In Kinetic of Geochemical Processes. Reviews in Mineralogy, Vol. 8, Lasaga, A. C., and Kirkpatrick, R. J., eds. Washington, D.C.: Mineral. Soc. Amer., 168.CrossRefGoogle Scholar
Rayner, J. H., 1962. An examination of the rate of formation of kaolinite from a co-precipitated silica gel. Colloque International C.N.R.S. sur “Genèse et synthèse des argiles. Paris, 123127.Google Scholar
Rodrique, L., Poncelet, G., and Herbillon, A. 1972. Importance of silica subtraction process during the hydrothermal kaolinitization of amorphous silico-aluminas. Proc. Int. Clay Conf., Madrid 1972, 187198.Google Scholar
Satokawa, S., Osaki, Y., Samejima, S., Miyawaki, R., Tomura, S., Shibasaki, I., and Sugahara, Y. 1994. Effects of the structure of silica-alumina gel on the hydrothermal synthesis of kaolinite. Clays & Clay Miner. 42: 288297.Google Scholar
Sunagawa, I., 1987. Morphology of minerals. In Morphology of Crystals. Sunagawa, I., ed. Terra Sci. Pub. Co., Tokyo, 509587.Google Scholar
Tazaki, K., Fyfe, W. S., and van der Gaast, S. J. 1989. Growth of clay minerals in natural and synthetic glasses. Clays & Clay Miner. 37: 348354.Google Scholar
Tazaki, K., Tiba, T., Aratani, M., and Miyachi, M. 1992. Structural water in volcanic glass. Clays & Clay Miner. 40: 122127.Google Scholar
Tomura, S., Miyawaki, R., Inukai, K., Shibasaki, Y., Okazaki, M., Samejima, S., Satokawa, S., and Kamori, M. 1993. Formation process of kaolinite from amorphous phases. Int. Clay Conf., Adelaide 1993, P-151 (abs).Google Scholar
Tomura, S., Shibasaki, Y., Mizuta, H., and Kitamura, M. 1983. Spherical kaolinite: synthesis and mineralogical properties. Clays & Clay Miner. 31: 413421.CrossRefGoogle Scholar
Tomura, S., Shibasaki, Y., and Mizuta, H. 1985a. Origin of the morphology of spherical kaolinite. Clay Sci. 6: 159166.Google Scholar
Tomura, S., Shibasaki, Y., Mizuta, H., and Kitamura, M. 1985b. Growth conditions and genesis of spherical and platy kaolinite. Clays & Clay Miner. 33: 200206.Google Scholar
Tsuzuki, Y., 1976. Solubility diagrams for explaining zone sequences in bauxite, kaolin and pyrophyllite-diaspore deposits. Clays & Clay Miner. 24: 297302.Google Scholar
Trichet, J., 1969. Study of the structure of volcanic glass and its relation to the alteration of volcanic rocks. Proc. Int. Clay Conf., Tokyo 1969, Vol. 1, Heller, L., ed. Jerusalem: Israel University Press, 443453.Google Scholar
Van Oosterwyck-Gastuche, M. C., and Iglesia, A. La. 1978. Kaolinite synthesis. II. A review and discussion of the factors influencing the rate process. Clays & Clay Miner. 26: 409417.Google Scholar
Walter, J. V., and Hegelson, H. C. 1977. Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polimorphs at high pressures and temperatures. Am. J. Sci. 277: 13151351.Google Scholar