Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T01:00:41.489Z Has data issue: false hasContentIssue false

Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 2. Monolayer Hydrates

Published online by Cambridge University Press:  28 February 2024

N. T. Skipper
Affiliation:
Department of Physics and Astronomy, University College, Gower Street, London WC1E 6BT, UK
Garrison Sposito
Affiliation:
Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720-3110
Fang-Ru Chou Chang
Affiliation:
Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720-3110
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Monte Carlo (MC) simulations of interlayer molecular structure in monolayer hydrates of Na-saturated Wyoming-type montmorillonites and vermiculite were performed. Detailed comparison of the stimulation results with experimental diffraction and thermodynamic data for these clay-water systems indicated good semiquantitative to quantitative agreement. The MC simulations revealed that, in the monolayer hydrate, interlayer water molecules tend to increase their occupation of the midplane as layer charge increases. As the percentage of tetrahedral layer charge increases, water molecules are induced to interact with the siloxane surface O atoms through hydrogen bonding and Na+ counter-ions are induced to form inner-sphere surface complexes. These results suggest the need for careful diffraction experiments on a series of monolayer hydrates of montmorillonite whose layer charge and tetrahedral isomorphic substitution charge vary systematically.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Adamson, A. W., 1990. Physical Chemistry of Surfaces. New York: Wiley, 591681.Google Scholar
Allen, M. P., and Tildesley, D. J. 1987. Computer Simulation of Liquids. Oxford: Clarendon Press, 110139.Google Scholar
Bailey, S. W., 1980. Structures of layer silicates. In Crystal Structures of Clay Minerals and their X-ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, 1123.Google Scholar
Beveridge, D. L., Mezei, M., Mehroortra, P. K., Marchese, F. T., Ravi-Shanker, G., Vasu, T., and Swaminathan, S. Monte Carlo computer simulation studies of the equilibrium properties and structure of liquid water. In Molecular-Based Study of Fluids. Haile, J. M., and Mansoori, G. A., 1983 eds. Washington: American Chemical Society, 297351.Google Scholar
Bleam, W. F., 1993. Atomic theories of phyllosilicates. Rev. Geophys. 31: 5173.Google Scholar
Bopp, P., 1987. Molecular dynamics simulations of aqueous ionic solutions. In The Physics and Chemistry of Aqueous Ionic Solutions. Bellissent-Funel, M.-C., and Neilson, G. W., eds. Boston: D. Reidel, 217243.Google Scholar
Bounds, D. G., 1985. A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca2+, Ni2+, and Cl. Mol. Phys. 54: 13341355.Google Scholar
Bradley, W. F., Weiss, E. J., and Rowland, R. A. 1963. A glycol sodium vermiculite complex. Clays & Clay Miner. 10: 117122.Google Scholar
Buckingham, A. D., 1987. The structure and properties of a water molecule. In Water and Aqueous Solutions. Neilson, G. W., and Enderby, J. E., eds. Boston: Adam Hilger, 110.Google Scholar
Chandrasekhar, J., and Jorgensen, W. L. 1982. The nature of dilute solutions of sodium ions in water, methanol, and tetrahydrofuran. J. Chem. Phys. 77: 50805089.Google Scholar
de la Calle, C., and Suquet, H. 1988. Vermiculite. Rev. Mineral. 19: 455496.Google Scholar
de la Calle, C., Plançon, A., Pons, C. H., Dubernat, J., Suquet, H., and Pezerat, H. 1984. Mode d'Empilement des Feuillets dans la Vermiculite Sodique Hydratée à Une Couche (Phase à 11.85 Å). Clay Miner. 19: 563578.Google Scholar
Fu, M. H., Zhang, Z. Z., and Low, P. F. 1990. Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water. Hysteresis. Clays & Clay Miner. 38: 485492.Google Scholar
Güven, N., 1992. Molecular aspects of clay-water interactions. In Clay-Water Interface and Its Rheological Implications. Güven, N., and Pollastro, R. M., eds. Boulder: The Clay Minerals Society, 279.Google Scholar
Hawkins, R. K., and Egelstaff, P. A. 1980. Interfacial water structure in montmorillonite from neutron diffraction experiments. Clays & Clay Miner. 28: 928.Google Scholar
Impey, R. W., Madden, P. A., and McDonald, I. R. 1983. Hydration and mobility of ions in solution. J. Phys. Chem. 87: 50715083.Google Scholar
Johnston, C. T., Sposito, G., and Erickson, C. 1992. Vibrational probe studies of water interactions with montmorillonite. Clays & Clay Miner. 40: 722730.Google Scholar
Keren, R., and Shainberg, I. 1975. Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems—I. Homoionic clay. Clays & Clay Miner. 23: 193200.Google Scholar
Keren, R., and Shainberg, I. 1980. Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems—III. Thermodynamics. Clay & Clay Miner. 28: 204210.Google Scholar
Le Renard, J., and Mamy, J. 1971. Etude de la structure des phases hydratées des phlogopites alterées par des projections de Fourier monodimensionelles. Bull. Groupe Français Argiles 23: 119127.Google Scholar
Low, P. F., 1985. The clay-water interface. Proc. Int. Clay Conf., Denver: Clay Minerals Society, 247256.Google Scholar
Low, P. F., 1987. Structural component of the swelling pressure of clays. Langmuir 3: 1825.Google Scholar
Madden, P. A., and Impey, R. W. 1986. Dynamics of coordinated water: A comparison of experiment and simulation results. Ann. N.Y. Acad. Sci. 482: 91114.Google Scholar
Matsouka, O., Clementi, E., and Yoshimine, M. 1976. Cl study of the water dimer potential surface. J. Chem. Phys. 64: 13511361.Google Scholar
Mezei, M., and Beveridge, D. L. 1981. Monte Carlo studies of the structure of dilute aqueous solutions of Li+, Na+, K+, F, and Cl. J. Chem. Phys. 74: 69026910.Google Scholar
Miller, S. E., and Low, P. F. 1990. Characterization of the electrical double layer of montmorillonite. Langmuir 6: 289296.Google Scholar
Mooney, R. W., Keenan, A. G., and Wood, L. A. 1952a. Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory. J. Am. Chem. Soc. 74: 13671371.Google Scholar
Mooney, R. W., Keenan, A. G., and Wood, L. A. 1952b. Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. J. Am. Chem. Soc. 74: 13711374.Google Scholar
Newman, A. C. D., 1987. The interaction of water with clay mineral surfaces: In Chemistry of Clays and Clay Minerals. Newman, A. C. D., ed. New York: Wiley, 237274.Google Scholar
Newman, A. C. D., and Brown, G. The interaction of water with clay mineral surfaces. In Chemistry of Clays and Clay Minerals. Newman, A. C. D., 1987 ed. New York: Wiley, 1128.Google Scholar
Pezerat, H., and Méring, J. 1967. Recherches sur la position des cations échangeables et de l'eau dans les montmorillonites. C.R. Acad. Sci. Paris 265(Série D): 529532.Google Scholar
Schulz, L. G., 1969. Lithium and potassium adsorption, dehydroxycation temperature, and structural water content of aluminous smectites. Clays & Clay Miner. 17: 115149.Google Scholar
Skipper, N. T., 1992. MONTE: User's Manual: Technical Report, Department of Chemistry, University of Cambridge, UK.Google Scholar
Skipper, N. T., and Neilson, G. W. 1989. X-Ray and neutron diffraction studies on concentrated aqueous solutions of sodium nitrate and silver nitrate. J. Phys. Condens. Matter 1: 41414154.Google Scholar
Skipper, N. T., Refson, K., and McConnell, J. D. C. 1989. Computer calculation of water-clay interactions using atomic pair potentials. Clay Miner. 24: 411425.Google Scholar
Skipper, N. T., Soper, A. K., and McConnell, J. D. C. 1991a. The structure of interlayer water in vermiculite. J. Chem. Phys. 94: 57515760.Google Scholar
Skipper, N. T., Refson, K., and McConnell, J. D. C. 1991b. Computer simulation of interlayer water in 2: 1 clays. J. Chem. Phys. 94: 74347445.Google Scholar
Skipper, N. T., Refson, K., and McConnell, J. D. C. Monte Carlo simulations of Mg- and Na-smectites. In Geochemistry of Clay-Pore Fluid Interactions. Manning, D. C., Hall, P. L., and Hughes, C. R., 1993 eds. London: Chapman and Hall, 4059.Google Scholar
Skipper, N. T., Chang, F.-R.C., and Sposito, G. 1995. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology. Clays & Clay Miner. (in review).Google Scholar
Slabaugh, W. H., 1959. Adsorption characteristics of homoionic bentonites. J. Phys. Chem. 63: 436438.Google Scholar
Sposito, G., 1984. The Surface Chemistry of Soils. New York: Oxford University Press, 177.Google Scholar
Sposito, G., 1992. The diffuse-ion swarm near smectite particles suspended in 1: 1 electrolyte solutions: Modified Gouy-Chapman theory and quasicrystal formation. In Clay-Water Interface and its Rheological Implications. Güven, N., and Pollastro, R.M., eds. Boulder: The Clay Minerals Society, 128155.Google Scholar
Sposito, G., and Prost, R. 1982. Structure of water adsorbed on smectites. Chem. Rev. 82: 553573.Google Scholar
Sposito, G., Prost, R., and Gaultier, J. P. 1983. Infrared spectroscopic study of adsorbed water on reduced-charge Na/Li montmorillonites. Clays & Clay Miner. 31: 916.Google Scholar
van Olphen, H., 1965. Thermodynamics of interlayer adsorption of water in clays. I. Na vermiculite. J. Colloid & Interface Sci. 20: 822837.Google Scholar
Zettlemoyer, A. C., Young, G. J., and Chessick, J. J. 1955. Studies of the surface chemistry of silicate minerals. III. Heats of immersion of bentonites in water. J. Phys. Chem. 59: 962966.Google Scholar