Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:57:41.176Z Has data issue: false hasContentIssue false

Molecular-Scale Imaging of Clay Mineral Surfaces with the Atomic Force Microscope

Published online by Cambridge University Press:  02 April 2024

H. Hartman
Affiliation:
Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720
Garrison Sposito
Affiliation:
Department of Soil Science, University of California, Berkeley, California 94720
Andrew Yang
Affiliation:
Department of Soil Science, University of California, Berkeley, California 94720
S. Manne
Affiliation:
Department of Physics, University of California, Santa Barbara, California 93106
S. A. C. Gould
Affiliation:
Department of Physics, University of California, Santa Barbara, California 93106
P. K. Hansma
Affiliation:
Department of Physics, University of California, Santa Barbara, California 93106
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Specimen samples of Crook County montmorillonite and Silver Hill illite, purified and prepared in the Na-form, were imaged under 80% relative humidity using an atomic force microscope. The direct images showed clearly the hexagonal array of hexagonal rings of oxygen ions expected for the basal planes of 2:1 phyllosilicates. Fourier transformation of the digital information obtained by the microscope scanning tip led to an estimate of 5.1 ± 0.3 Å for the nearest-neighbor separation, in agreement with the ideal nearest-neighbor spacing of 5.4 Å for hexagonal rings as derived from X-ray powder diffraction data. The atomic force microscope should prove to be a useful tool for the molecular-scale resolution of clay mineral surfaces that contain adsorbed macromolecules.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

References

Albrecht, T. R. and Quate, C. F., 1988 Atomic resolution with the atomic force microscope on conductors and non-conductors J. Vac. Sci. Technol. A6 271274.CrossRefGoogle Scholar
Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., Hansma, P. K., Longmire, M. and Gurley, J., 1989 An atomic-resolution atomic-force microscope implemented using an optical lever J. Appl. Phys. 65 164167.CrossRefGoogle Scholar
Bailey, S. W., ed. (1984) Micas: Reviews in Mineralogy, Vol. 13: Mineralogical Society of America, Washington, D.C., 584 pp.CrossRefGoogle Scholar
Bailey, S. W., ed. (1988) Hydrous Phyllosilicates: (Exclusive of micas), Reviews in Mineralogy, Vol. 19: Mineralogical Society of America, Washington, D.C., 725 pp.CrossRefGoogle Scholar
Binnig, G., Quate, C. F. and Gerber, C.h., 1986 Atomic force microscope Phys. Rev. Lett. 56 930933.CrossRefGoogle ScholarPubMed
Brindley, G. W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Drake, B., Prater, C. B., Weisenhorn, A. L., Gould, S. A. C. Albrecht, T. R., Quate, C. F., Cannell, D. S., Hansma, H. G. and Hansma, P. K., 1989 Imaging crystals, polymers, and processes in water with the atomic force microscope Science 243 15861588.CrossRefGoogle ScholarPubMed
Gould, S AC Burke, K. and Hansma, P. K., 1989 Simple theory for the atomic-force microscope with a comparison of theoretical and experimental images of graphite Phys. Rev. B40 53635366.CrossRefGoogle Scholar
Gould, S. A. C. Drake, B., Prater, C. B., Weisenhorn, A. L., Manne, S., Hansma, H. G., Hansma, P. K., Masse, J., Longmire, M., Elings, V. D., Northern, B., Mukergee, B., Peterson, C. M., Stoeckenius, W., Albrecht, T. R. and Quate, C. F., 1990 From atoms to integrated-circuit chips, blood cells and bacteria with the atomic force microscope J. Vac. Sci. Technol. A8 369375.CrossRefGoogle Scholar
Hochella, M. F., Eggleston, C. M., Elings, V. B. and Thompson, M. S., 1990 Atomic structure and morphology of the albite (010) surface: An atomic-force microscope and electron diffraction study Amer. Mineral .Google Scholar
Hower, J. and Mowatt, T. C., 1966 The mineralogy of illites and mixed-layer illite-montmorillonites Amer. Mineral. 51 825854.Google Scholar
Meyer, G. and Amer, N. M., 1988 Erratum: Novel optical approach to atomic force microscopy [Appl. Phys. Lett. 53, 1095 (1988)] Appl. Phys. Lett. 53 24002402.CrossRefGoogle Scholar
Newman, A. C. D., 1987 Chemistry of Clays and Clay Minerals New York Wiley.Google Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford University Press.Google Scholar
Sposito, G., Holtzclaw, K. M., Johnston, C. T. and LeVesque-Madore, C.S., 1981 Thermodynamics of sodium-copper exchange on Wyoming bentonite Soil Sci. Soc. Amer. J. 45 10791084.CrossRefGoogle Scholar
Sposito, G. and LeVesque, C. S., 1985 Sodium-calcium-magnesium exchange on Silver Hill illite Soil Sci. Soc. Amer. J. 49 11531159.CrossRefGoogle Scholar
Thellier, C. and Sposito, G., 1988 Quaternary cation exchange on Silver Hill illite Soil Sci. Soc. Amer. J. 52 979985.CrossRefGoogle Scholar
Theng, B. K. G., 1979 Formation and Properties of Clay-Polymer Complexes Amsterdam Elsevier.Google Scholar
Weaver, C. D. and Pollard, L. D., 1973 The Chemistry of Clay Minerals Amsterdam Elsevier.Google Scholar
Wickramasinghe, H. K., 1989 Scanned-probe microscopes Sci. Amer. 260 98105.CrossRefGoogle Scholar