Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T19:59:35.591Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Anion Exclusion in Clay Interlayer Nanopores

Published online by Cambridge University Press:  01 January 2024

Christophe Tournassat*
Affiliation:
Université d’Orléans — CNRS/INSU — BRGM, UMR 7327 Institut des Sciences de la Terre d’Orléans, 45071, Orléans, France Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Ian C. Bourg
Affiliation:
Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA Department of Civil and Environmental Engineering and Princeton Environmental Institute, Princeton, New Jersey, USA
Michael Holmboe
Affiliation:
Department of Chemistry, Umeå University, Sweden
Garrison Sposito
Affiliation:
Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
Carl I. Steefel
Affiliation:
Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aqueous chemistry of water films confined between clay mineral surfaces remains an important unknown in predictions of radioelement migration from radioactive waste repositories. This issue is particularly important in the case of long-lived anionic radioisotopes (129I-, 99TcO4-, 36Cl-) which interact with clay minerals primarily by anion exclusion. For example, models of ion migration in clayey media do not agree as to whether anions are completely or partially excluded from clay interlayer nanopores. In the present study, this key issue was addressed for Cl- using MD simulations for a range of nanopore widths (6 to 15 Å) overlapping the range of average pore widths that exists in engineered clay barriers. The MD simulation results were compared with the predictions of a thermodynamic model (Donnan Equilibrium model) and two pore-scale models based on the Poisson-Boltzmann equation under the assumption that interlayer water behaves as bulk liquid water. The simulations confirmed that anion exclusion from clay interlayers is greater than predicted by the pore-scale models, particularly at the smallest pore size examined. This greater anion exclusion stems from Cl- being more weakly solvated in nano-confined water than it is in bulk liquid water. Anion exclusion predictions based on the Poisson-Boltzmann equation were consistent with the MD simulation results, however, if the predictions included an ion closest approach distance to the clay mineral surface on the order of 2.0 ± 0.8 Å. These findings suggest that clay interlayers approach a state of complete anion exclusion (hence, ideal semi-permeable membrane properties) at a pore width of 4.2 ± 1.5 Å.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2016

Footnotes

This paper is published as part of a special issue on the subject of ‘Computational Molecular Modeling’. Some of the papers were presented during the 2015 Clay Minerals Society-Euroclay Conference held in Edinburgh, UK.

References

Altmann, S., 2008 Geo’chemical research: A key building block for nuclear waste disposal safety cases Journal of Contaminant Hydrology 102 174179.CrossRefGoogle ScholarPubMed
Altmann, S. Tournassat, C. Goutelard, F. Parneix, J.-C. Gimmi, T. and Maes, N., 2012 Diffusion-driven transport in clayrock formations Applied Geochemistry 27 463478.CrossRefGoogle Scholar
Appelo, C.A.J. and Wersin, P., 2007 Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus clay Environmental Science & Technology 41 50025007.CrossRefGoogle Scholar
Appelo, C.A.J. Van Loon, L.R. and Wersin, P., 2010 Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus clay Geochimica et Cosmochimica Acta 74 12011219.CrossRefGoogle Scholar
Babcock, K.L., 1960 Some characteristics of a model Donnan system Soil Science 90 245252.CrossRefGoogle Scholar
Babcock, K.L., 1963 Theory of the chemical properties of soil colloidal systems at equilibrium Hilgardia 34 417542.CrossRefGoogle Scholar
Berendsen, H.J.C. Grigera, J.R. and Straatsma, T.P., 1987 The missing term in effective pair potentials Journal of Physical Chemistry 91 62696271.CrossRefGoogle Scholar
Bickmore, B.R. Rosso, K.M. Nagy, K.L. Cygan, R.T. and Tadanier, C.J., 2003 Ab initio determination of edge surface structures for dioctahedral 2: 1 phyllosilicates: Implications for acid-base reactivity Clays and Clay Minerals 51 359371.CrossRefGoogle Scholar
Birgersson, M. and Karnland, O., 2009 Ion equilibrium between montmorillonite interlayer space and an external solut ion-Consequences for diffusional transport Geochimica et Cosmochimica Acta 73 19081923.CrossRefGoogle Scholar
Bocquet, L. and Charlaix, E., 2010 Nanofluidics, from bulk to interfaces Chemical Society Reviews 39 10731095.CrossRefGoogle ScholarPubMed
Bourg, I.C. and Sposito, G., 2010 Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media Environmental Science & Technology 44 20852091.CrossRefGoogle Scholar
Bourg, I.C. and Sposito, G., 2011 Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions Journal of Colloid and Interface Science 360 701715.CrossRefGoogle ScholarPubMed
Bourg, I.C. and Tournassat, C., 2015 Self-diffusion of water and ions in clay barriers. Ch. 6 Natural and Engineered Clay Barriers 6 71100.Google Scholar
Bourg, I.C. Sposito, G. and Bourg, A.C.M., 2008 Modeling the diffusion of Na+ in compacted water-saturated Nabentonite as a function of pore water ionic strength Applied Geochemistry 23 36353641.CrossRefGoogle Scholar
Chagneau, A. Tournassat, C. Steefel, C.I. Bourg, I.C. Kupcik, T. Gaboreau, S. Claret, F. Esteve, I. and Schäfer, T., 2015 Complete restriction of 36Cl- diffusion by celestite precipitation in densely compacted illite Environmental Science & Technology Letters 2 139143.CrossRefGoogle Scholar
Cheng, G. and Hendry, M.J., 2014 Chemico-osmosis in geologic membranes: Role of membrane potential gradient Geochimica et Cosmochimica Acta 141 270280.CrossRefGoogle Scholar
Churakov, S.V., 2006 Ab initio study of sorption on pyrophyllite: Structure and acidity of the edge sites The Journal of Physical Chemistry B 110 41354146.CrossRefGoogle ScholarPubMed
Churakov, S.V. and Gimmi, T., 2011 Up-scaling of molecular diffusion coefficients in clays: A two-step approach The Journal of Physical Chemistry C 115 67036714.CrossRefGoogle Scholar
Claret, F. Lerouge, C. Laurioux, T. Bizi, M. Conte, T. Ghestem, J.P. Wille, G. Sato, T. Gaucher, E.C. Giffaut, E. and Tournassat, C., 2010 Natural iodine in a clay formation: Implications for iodine fate in geological disposals Geochimica et Cosmochimica Acta 74 1629.CrossRefGoogle Scholar
Crozier, P.S. Henderson, D. Rowley, R.L. and Busath, D.D., 2001 Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics Biophysical journal 81 30773089.CrossRefGoogle ScholarPubMed
Cygan, R.T. Liang, J.-J. and Kalinichev, A.G., 2004 Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field The Journal of Physical Chemistry B 108 12551266.CrossRefGoogle Scholar
Eastwood, J. Hockney, R. and Lawrence, D., 1980 P3M3DP — The three-dimensional periodic particle-particle/particle-mesh program Computer Physics Communications 19 215261.CrossRefGoogle Scholar
Ferrage, E. Sakharov, B.A. Michot, L.J. Delville, A. Bauer, A. Lanson, B. Grangeon, S. Frapper, G. Jiménez-Ruiz, M. and Cuello, G.J., 2011 Hydration properties and interlayer organization of water and ions in synthetic Nasmectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data The Journal of Physical Chemistry C 115 18671881.CrossRefGoogle Scholar
Fritz, S.J., 1986 Ideality of clay membranes in osmotic processes: a review Clays and Clay Minerals 34 214223.CrossRefGoogle Scholar
Glaus, M.A. Frick, S. Rossé, R. and Van Loon, L.R., 2011 Consistent interpretation of the results of through-, outdiffusion and tracer profile analysis for trace anion diffusion in compacted montmorillonite Journal of Contaminant Hydrology 123 110.CrossRefGoogle ScholarPubMed
Glaus, M.A. Birgersson, M. Karnland, O. and Van Loon, L.R., 2013 Seeming steady-state uphill diffusion of 22Na+ in compacted montmorillonite Environmental Science & Technology 47 1152211527.CrossRefGoogle ScholarPubMed
Hedström, M. and Karnland, O., 2012 Donnan equilibrium in Na-montmorillonite from a molecular dynamics perspective Geochimica et Cosmochimica Acta 77 266274.CrossRefGoogle Scholar
Holmboe, M. and Bourg, I.C., 2014 Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature The Journal of Physical Chemistry C 118 10011013.CrossRefGoogle Scholar
Holmboe, M. Wold, S. and Jonsson, M., 2012 Porosity investigation of compacted bentonite using XRD profile modeling Journal of Contaminant Hydrology 128 1932.CrossRefGoogle ScholarPubMed
Hsiao, Y.-W. and Hedström, M., 2015 Molecular dynamics simulations of NaCl permeation in bihydrated montmorillonite interlayer nanopores The Journal of Physical Chemistry C 119 1735217361.CrossRefGoogle Scholar
Isele-Holder, R.E. Mitchell, W. and Ismail, A.E., 2012 Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions The Journal of Chemical Physics 137 174107174107.CrossRefGoogle ScholarPubMed
Jardat, M. Dufreche, J.F. Marry, V. Rotenberg, B. and Turq, P., 2009 Salt exclusion in charged porous media: a coarse-graining strategy in the case of montmorillonite clays Physical Chemistry Chemical Physics 11 20232033.CrossRefGoogle ScholarPubMed
Keijzer, T.J. Kleingeld, P. and Loch, J., 1999 Chemical osmosis in compacted clayey material and the prediction of water transport Engineering Geology 53 151159.CrossRefGoogle Scholar
Kharaka, Y.K. and Berry, F.A., 1973 Simultaneous flow of water and solutes through geological membranes — I. Experimental investigation Geochimica et Cosmochimica Acta 37 25772603.CrossRefGoogle Scholar
Kim, Y.W. and Netz, R.R., 2006 Electro-osmosis at inhomogeneous charged surfaces: Hydrodynamic versus electric friction The Journal of Chemical Physics 124 114709.CrossRefGoogle ScholarPubMed
Kraepiel, A.M.L. Keller, K. and Morel, F.M.M., 1999 A model for metal adsorption on montmorillonite Journal of Colloid and Interface Science 210 4354.CrossRefGoogle Scholar
Lee, S.S. Fenter, P. Park, C. Sturchio, N.C. and Nagy, K.L., 2010 Hydrated Cation Speciation at the Muscovite (001)-Water Interface Langmuir 26 1664716651.CrossRefGoogle ScholarPubMed
Lee, S.S. Fenter, P. Nagy, K.L. and Sturchio, N.C., 2012 Monovalent ion adsorption at the muscovite (001)-solution interface: Relationships among ion coverage and speciation, interfacial water structure, and substrate relaxation Langmuir 28 86378650.CrossRefGoogle ScholarPubMed
Leroy, P. Revil, A. and Coelho, D., 2006 Diffusion of ionic species in bentonite Journal of Colloid and Interface Science 296 248255.CrossRefGoogle ScholarPubMed
Liu, X. Cheng, J. Sprik, M. Lu, X. and Wang, R., 2014 Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulat ions Geochimica et Cosmochimica Acta 140 410417.CrossRefGoogle Scholar
Low, P.F., 1979 Nature and properties of water in montmorillonite-water systems Soil Science Society of America Journal 43 651658.CrossRefGoogle Scholar
Marry, V. Turq, P. Cartailler, T. and Levesque, D., 2002 Microscopic simulation for structure and dynamics of water and counterions in a monohydrated montmorillonite The Journal of Chemical Physics 117 34543463.CrossRefGoogle Scholar
Marry, V. Rotenberg, B. and Turq, P., 2008 Structure and dynamics of water at a clay surface from molecular dynamics simulation Physical Chemistry Chemical Physics 10 48024813.CrossRefGoogle Scholar
Marry, V. Dubois, E. Malikova, N. Durand-Vidal, S. Longeville, S. and Breu, J., 2011 Water dynamics in hectorite clays: Infuence of temperature studied by coupling neutron spin echo and molecular dynamics Environmental Science & Technology 45 28502855.CrossRefGoogle Scholar
Muurinen, A. Karnland, O. and Lehikoinen, J., 2007 Effect of homogenization on the microstructure and exclusion of chloride in compacted bentonite Physics and Chemistry of the Earth, Parts A/B/C 32 485490.CrossRefGoogle Scholar
Newton, A.G. and Sposito, G., 2015 Molecular dynamics simulations of pyrophyllite edge surfaces: structure, surface energies, and solvent accessibility Clays and Clay Minerals 63 277289.CrossRefGoogle Scholar
Newton, A.G. Kwon, K.D. and Cheong, D.-K., 2016 Edge structure of montmorillonite from atomistic simulations Minerals 6 25.CrossRefGoogle Scholar
Nikaido, H., 2003 Molecular basis of bacterial outer membrane permeability revisited Microbiology and Molecular Biology Reviews 67 593656.CrossRefGoogle ScholarPubMed
Nikaido, H. and Rosenberg, E.Y., 1981 Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli The Journal of General Physiology 77 121135.CrossRefGoogle ScholarPubMed
Plimpton, S., 1995 Fast parallel algorithms for short-range molecular dynamics Journal of Computational Physics 117 119.CrossRefGoogle Scholar
Revil, A. Woodruff, W. and Lu, N., 2011 Constitutive equations for coupled flows in clay materials Water Resources Research 47 121.CrossRefGoogle Scholar
Richards, L.A. Schäfer, A.I. Richards, B.S. and Corry, B., 2012 The importance of dehydration in determining ion transport in narrow pores Small 8 17011709.CrossRefGoogle ScholarPubMed
Rotenberg, B. Marry, V. Dufreche, J.-F. Malikova, N. Giffaut, E. and Turq, P., 2007 Modelling water and ion diffusion in clays: A multiscale approach Comptes Rendus Chimie 10 11081116.CrossRefGoogle Scholar
Rotenberg, B. Marry, V. Vuilleumier, R. Malikova, N. Simon, C. and Turq, P., 2007 Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics Geochimica et Cosmochimica Acta 71 50895101.CrossRefGoogle Scholar
Ryckaert, J.-P. Ciccotti, G. and Berendsen, H.J.C., 1977 Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of nalkanes Journal of Computational Physics 23 327341.CrossRefGoogle Scholar
Schlegel, M.L. Nagy, K.L. Fenter, P. Cheng, L. Sturchio, N.C. and Jacobsen, S.D., 2006 Cation sorption on the muscovite (0 0 1) surface in chloride solutions using high-resolution X-ray reflectivity Geochimica et Cosmochimica Acta 70 35493565.CrossRefGoogle Scholar
Schoch, R.B. Han, J. and Renaud, P., 2008 Transport phenomena in nanofluidics Reviews of Modern Physics 80 839.CrossRefGoogle Scholar
Sherwood, J. and Craster, B., 2000 Transport of water and ions through a clay membrane Journal of Colloid and Interface Science 230 349358.CrossRefGoogle ScholarPubMed
Smith, D. Pivonka, P. Jungnickel, C. and Fityus, S., 2004 Theoretical analysis of anion exclusion and diffusive transport through platy-clay soils Transport in Porous Media 57 251277.CrossRefGoogle Scholar
Smith, D.E. and Dang, L.X., 1994 Computer simulations of NaCl association in polarizable water The Journal of Chemical Physics 100 37573766.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry Of Soils New York Oxford University Press.Google Scholar
Sposito, G., Güven, N. and Pollastro, R.M., 1992 The diffuse-ion swarm near smectite particles suspended in 1:1 electrolyte solutions: modified Gouy-Chapman theory and quasicrystal formation Clay-Water Interface and its Rheological Implications Boulder, Colorado, USA The Clay Minerals Society 127156.Google Scholar
Sposito, G., 2004 The Surface Chemistry of Natural Particles New York Oxford University Press.CrossRefGoogle Scholar
Tachi, Y. Yotsuji, K. Suyama, T. and Ochs, M., 2014 Integrated sorption and diffusion model for bentonite. Part 2: porewater chemistry, sorption and diffusion modeling in compacted systems Journal of Nuclear Science and Technology 51 114.Google Scholar
Tambach, T.J. Hensen, E.J.M. and Smit, B., 2004 Molecular simulations of swelling clay minerals The Journal of Physical Chemistry B 108 75867596.CrossRefGoogle Scholar
Tertre, E. Ferrage, E. Bihannic, I. Michot, L.J. and Pret, D., 2011 Influence of the ionic strength and solid/solution ratio on Ca(II)-for-Na(+) exchange on montmorillonite. Part 2: Understanding the effect of the m/V ratio. Implications for pore water composition and element transport in natural media Journal of Colloid and Interface Science 363 334347.CrossRefGoogle Scholar
Tinnacher, R.M. Holmboe, M. Tournassat, C. Bourg, I.C. and Davis, J.A., 2016 Ion adsorption and diffusion in smectite: molecular, pore, and continuum scale views Geochimica et Cosmochimica Acta 177 130149.CrossRefGoogle Scholar
Tournassat, C. and Appelo, C.A.J., 2011 Modelling approaches for anion-exclusion in compacted Na-bentonite Geochimica et Cosmochimica Acta 75 36983710.CrossRefGoogle Scholar
Tournassat, C. Gaucher, E.C. Fattahi, M. and Grambow, B., 2007 On the mobility and potential retention of iodine in the Callovian-Oxfordian formation Physics and Chemistry of the Earth 32 539551.CrossRefGoogle Scholar
Tournassat, C. Chapron, Y. Leroy, P. and Boulahya, F., 2009 Comparison of molecular dynamics simulations with Triple Layer and modified Gouy-Chapman models in a 0.1 M NaCl-montmorillonite system Journal of Colloid and Interface Science 339 533541.CrossRefGoogle Scholar
Tournassat, C. Bizi, M. Braibant, G. and Crouzet, C., 2011 Influence of montmorillonite tactoid size on Na-Ca cation exchange reactions Journal of Colloid and Interface Science 364 443454.CrossRefGoogle ScholarPubMed
Tournassat, C. Gaboreau, S. Robinet, J.-C. Bourg, I.C. and Steefel, C.I., 2016 Impact of microstructure on anion exclusion in compacted clay media. Ch. 11 CMS Workshop Lecture Series 21 137149.CrossRefGoogle Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Minerals 19 177193.CrossRefGoogle Scholar
Wang, X.-L. Tsuru, T. Nakao, S. and Kimura, S., 1995 Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model Journal of Membrane Science 103 117133.CrossRefGoogle Scholar
Wersin, P. Curti, E. and Appelo, C.A.J., 2004 Modelling bentonite-water interactions at high solid/liquid ratios: swelling and diffuse double layer effects Applied Clay Science 26 249257.CrossRefGoogle Scholar
White, G.N. and Zelazny, L.W., 1988 Analysis and implications of the edge structure of dioctahedral phyllosilicates Clays and Clay Minerals 36 141146.CrossRefGoogle Scholar