Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T23:07:10.896Z Has data issue: false hasContentIssue false

Modification of Montmorillonite with Poly(Oxypropylene) Amine Hydrochlorides: Basal Spacing, Amount Intercalated, and Thermal Stability

Published online by Cambridge University Press:  01 January 2024

Yaqing Wang
Affiliation:
School of Material Science and Engineering, Beihang University, Beijing 100191,, China
Xiaoqun Wang*
Affiliation:
School of Material Science and Engineering, Beihang University, Beijing 100191,, China
Yifeng Duan
Affiliation:
School of Material Science and Engineering, Beihang University, Beijing 100191,, China
Yuzhong Liu
Affiliation:
School of Material Science and Engineering, Beihang University, Beijing 100191,, China
Shanyi Du
Affiliation:
School of Material Science and Engineering, Beihang University, Beijing 100191,, China
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Few studies have explored the change in thermal stability of poly(oxypropylene) (POP) ammonium ions after intercalation, even though several studies have focused on the modification of montmorillonite (Mt) with POP amine hydrochloride. The purpose of the present study was to understand the effect of chain length of POP amine hydrochlorides on the basal spacing of modified Mt, and the amount and thermal stability of the ammonium ions intercalated. The relations between basal spacing, organic fraction, and thermal stability of the ammonium ions intercalated were also explored. Series of modified Mt were prepared via ion-exchange between Na+-montmorillonite (Na+-Mt) and POP diammonium ions or POP triammonium ions with different chain lengths, and were then characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, and simultaneous differential scanning calorimetry-thermogravimetric analysis. The results revealed that the basal spacing of modified Mt increased with the hydrophobic chain length of the POP ammonium ions. The amount of triammonium ions intercalated was close to the theoretical amount, while the organic fraction of modified Mt was directly proportionalto the basalspacing of modified Mt. The intercalated ammonium ions were, therefore, contained within the interlayer space ofMt. After intercalation, the thermal stability of the POP ammonium ions with various chain lengths was reduced; i.e.Tonset was reduced by 7–60°C for short-chain POP ammonium ions (D400 and T403) and by 177–192°C for long-chain ions (D2000, D4000, T3000, and T5000).

Type
Article
Copyright
Copyright © Clay Minerals Society 2011

References

Alexandre, M. and Dubois, P., 2000 Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials Materials Science and Engineering: R: Reports 28 163 10.1016/S0927-796X(00)00012-7.CrossRefGoogle Scholar
Bergaya, F. and Lagaly, G., 2001 Surface modification of clay minerals Applied Clay Science 19 13 10.1016/S0169-1317(01)00063-1.CrossRefGoogle Scholar
Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Handbook of Clay Science Amsterdam Elsevier.Google Scholar
Bergaya, F., Jaber, M., and Lambert, J.F. (2011) Rubber Clay Nanocomposites Science, Technology and Applications (Galimberti, M., editor). J. Wiley & Sons.Google Scholar
Becker, O. Varley, R. and Simona, G., 2002 Morphology, thermalrel axations and mechanicalpr operties of layered silicate nanocomposites based upon high-functionality epoxy resins Polymer 43 43654373 10.1016/S0032-3861(02)00269-0.CrossRefGoogle Scholar
Boyd, S.A. Sun, S.B. Lee, J.F. and Mortland, M.M., 1988 Pentachlorophenol sorption by organo-clays Clays and Clay Minerals 36 125130 10.1346/CCMN.1988.0360204.CrossRefGoogle Scholar
Chen, K.H. and Yang, S.M., 2002 Synthesis of epoxymontmorillonite nanocomposite Journal of Applied Polymer Science 86 414421 10.1002/app.10986.CrossRefGoogle Scholar
Chou, C.C. Shieu, F.S. and Lin, J.J., 2003 Preparation, organophilicity, and self-assembly of poly(oxypropylene)amine- clay hybrids Macromolecules 36 21872189 10.1021/ma025773h.CrossRefGoogle Scholar
Esfandiari, A. Nazokdast, H. Rashidi, A. and Yazdanshenas, M.E., 2008 Review of polymer-organoclay nanocomposites Journal of Applied Sciences 8 545561 10.3923/jas.2008.545.561.CrossRefGoogle Scholar
Gu, Z. Song, G.J. Liu, W.S. Yang, S.J. and Gao, J.M., 2010 Structure and properties of hydrogenated nitrile rubber/organo-montmorillonite nanocomposites Clays and Clay Minerals 58 7278 10.1346/CCMN.2010.0580107.CrossRefGoogle Scholar
Guan, G.H. Li, C.C. and Zhang, D., 2005 Spinning and properties of poly(ethylene terephthalate)/organomontmorillonite nanocomposite fibers Journal of Applied Polymer Science 95 14431447 10.1002/app.21387.CrossRefGoogle Scholar
Guegan, R. Gautier, M. Beny, J.M. and Muller, F., 2009 Adsorption of surfactant on a Ca-smectite Clays and Clay Minerals 57 502509 10.1346/CCMN.2009.0570411.CrossRefGoogle Scholar
Gupta, V.K. and Suhas, , 2009 Application of low-cost adsorbents for dye removal — A review Journal of Environmental Management 90 23132342 10.1016/j.jenvman.2008.11.017.CrossRefGoogle ScholarPubMed
Hrachová, J. Komadel, P. and Chodák, I., 2009 Natural rubber nanocomposites with organo-modified bentonite Clays and Clay Minerals 57 444451 10.1346/CCMN.2009.0570405.CrossRefGoogle Scholar
Hsu, R.S. Chang, W.H. and Lin, J.J., 2010 Nanohybrids of magnetic iron-oxide particles in hydrophobic organoclays for oilr ecovery ACS Applied Materials & Interfaces 2 13491354 10.1021/am100019t.CrossRefGoogle Scholar
Huskić, M. Žagar, E. Žigon, M. Brnardić, I. Macan, J. and Ivanković, M., 2009 Modification of montmorillonite by cationic polyesters Applied Clay Science 43 420424 10.1016/j.clay.2009.01.008.CrossRefGoogle Scholar
Jaber, M. and Lambert, J.F., 2010 A new nanocomposite: L-dopa/Laponite Journal of Physical Chemistry Letters 1 8588 10.1021/jz900020m.CrossRefGoogle Scholar
Jaynes, W.F. and Boyd, S.A., 1991 Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water Clays and Clay Minerals 39 428436 10.1346/CCMN.1991.0390412.CrossRefGoogle Scholar
Kong, D. and Park, C.E., 2003 Realt ime exfoliation behavior of clay layers in epoxy-clay nanocomposites Chemistry of Materials 15 1924 10.1021/cm0205837.CrossRefGoogle Scholar
Lagaly, G., 1981 Characterization of clays by organic compounds Clay Minerals 16 121 10.1180/claymin.1981.016.1.01.CrossRefGoogle Scholar
Lagaly, G., 1986 Interaction of alkyamines with differents types of layered compounds Solid State Ionics 22 4351 10.1016/0167-2738(86)90057-3.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A., 1969 Determination of the layer charge in mica-type layer silicates Proceedings of the International Clay Conference, Tokyo 1 6180.Google Scholar
Laza, A.L. Jaber, M. Miehé-Brendlé, J. Demais, H. Le Deit, H. Delmotte, L. and Vidal, L., 2007 Green nanocomposites: synthesis and characterisation Journal of Nanoscience and Nanotechnology 7 17 10.1166/jnn.2007.698.CrossRefGoogle Scholar
Lebaron, P.C. Wang, Z. and Pinnavaia, T.J., 1999 Polymerlayered silicate nanocomposites: an overview Applied Clay Science 15 1129 10.1016/S0169-1317(99)00017-4.CrossRefGoogle Scholar
Li, Z.H. and Jiang, W.T., 2009 Dodecyltrimethylammonium intercalation into rectorite Clays and Clay Minerals 57 194204 10.1346/CCMN.2009.0570206.CrossRefGoogle Scholar
Lin, J.J. and Chen, Y.M., 2004 Amphiphilic properties of poly(oxyalkylene)amine-intercalated smectite aluminosilicates Langmuir 20 42614264 10.1021/la0362775.CrossRefGoogle ScholarPubMed
Lin, J.J. Cheng, I.J. Wang, R. and Lee, R.J., 2001 Tailoring basal spacings of montmorillonite by poly(oxyalkylene)diamine intercalation Macromolecules 34 88328834 10.1021/ma011169f.CrossRefGoogle Scholar
Lin, J.J. Cheng, I.J. and Chen, Y.M., 2003 High compatibility of the poly(oxyalkylene)amine-intercalated montmorillonite for epoxy Polymer Journal 35 411416 10.1295/polymj.35.411.CrossRefGoogle Scholar
Lin, J.J. Chou, C.C. Chang, Y.C. and Chiang, M.L., 2004 Conformationalc hange of tri-functionalp oly(oxypropylene)-amine intercalated in layered silicate confinement Macromolecules 37 473477 10.1021/ma0343941.Google Scholar
Lin, J.J. Chen, Y.M. and Yu, M.H., 2007 Hydrogen-bond driven intercalation of synthetic fluorinated mica by poly(oxypropylene)-amidoamine salts Colloids and Surfaces A: Physicochem 302 162167 10.1016/j.colsurfa.2007.02.017.CrossRefGoogle Scholar
Lin, J.J. Chen, Y.M. Tsai, Y.M. and Chiu, C.W., 2008 Selfassembly of lamellar clay to hierarchical microarrays The Journal of Physical Chemistry C 112 96379643 10.1021/jp801733a.CrossRefGoogle Scholar
Marras, S.I. Tsimpliaraki, A. Zuburtikudis, I. and Panayiotou, C., 2007 Thermaland colloidalbeh avior of amine-treated clays: The role of amphiphilic organic cation concentration Journal of Colloid and Interface Science 315 520527 10.1016/j.jcis.2007.06.023.CrossRefGoogle Scholar
Monvisade, P. and Siriphannon, P., 2009 Chitosan intercalated montmorillonte: Preparation, characterization and cationic dye adsorption Applied Clay Science 42 427431 10.1016/j.clay.2008.04.013.CrossRefGoogle Scholar
Mortland, M.M. Sun, S.B. and Boyd, S.A., 1986 Clayorganic complexes as adsorbents for phenol and chlorophenols Clays and Clay Minerals 34 581585 10.1346/CCMN.1986.0340512.CrossRefGoogle Scholar
de Paiva, L.B. Morales, A.R. and Valenzuela Díaz, F.R., 2008 Organo-clays: properties, preparation and applications Applied Clay Science 42 824 10.1016/j.clay.2008.02.006.CrossRefGoogle Scholar
Pinnavaia, T.J. and Beall, G.W., 2000 Polymer-Clay Nanocomposites UK Wiley, Chichester.Google Scholar
Salahuddin, N.A., 2004 Layered silicate/epoxy nanocomposites: synthesis, characterization and properties Polymers for Advanced Technologies 15 251259 10.1002/pat.382.CrossRefGoogle Scholar
Salahuddin, N.A. Abo-El-Enein, S.A. Selim, A. and Salah El-Dien, O., 2010 Synthesis and characterization of polyurethane/organo-montmorillonite nanocomposites Applied Clay Science 47 242248 10.1016/j.clay.2009.10.017.CrossRefGoogle Scholar
Šucha, V. Czímerová, A. and Bujdák, J., 2009 Properties of I-S minerals from Rhodamine 6G dye interactions Clays and Clay Minerals 57 361370 10.1346/CCMN.2009.0570308.CrossRefGoogle Scholar
Wang, S.Z. and Zang, X.S., 1991 Modern Research Methods of Materials China Beihang University Press.Google Scholar
Xi, Y.F. Ding, Z. He, H. and Frost, R.L., 2004 Structure of organo-clays — an X-ray diffraction and thermogravimetric analysis study Journal of Colloid and Interface Science 277 116120 10.1016/j.jcis.2004.04.053.CrossRefGoogle Scholar
Xi, Y.F. Frost, R.L. He, H.P. Kloprogge, T. and Bostrom, T., 2005 Modification of Wyoming montmorillonite surfaces using a cationic surfactant Langmuir 21 86758680 10.1021/la051454i.CrossRefGoogle ScholarPubMed
Xi, Y.F. Frost, R.L. and He, H.P., 2007 Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methylammonium bromides Journal of Colloid and Interface Science 305 150158 10.1016/j.jcis.2006.09.033.CrossRefGoogle Scholar
Xie, W. Gao, Z.M. Pan, W.P. Hunter, D. Singh, A. and Vaia, R., 2001 Thermaldeg radation chemistry of alkyl quaternary ammonium montmorillonite Chemistry of Materials 13 29792990 10.1021/cm010305s.CrossRefGoogle Scholar
Yadav, L.D.S. and Rai, V.K., 2006 Chemoselective annulation of 1,3-dithiin, -thiazine and -oxathiin rings on thiazoles using a green protocol Tetrahedron 62 80298034 10.1016/j.tet.2006.06.030.CrossRefGoogle Scholar
Yoon, K.B. Sung, H.D. Hwang, Y.Y. Noh, S.K. and Lee, D.H., 2007 Modification of montmorillonite with oligomeric amine derivatives for polymer nanocomposite preparation Journal of Applied Polymer Science 38 18.Google Scholar
Zhao, Q. and Samulski, E.T., 2006 A comparative study of poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared in supercriticalcarb on dioxide Polymer 47 663671 10.1016/j.polymer.2005.11.079.CrossRefGoogle Scholar
Zhou, L.M. Chen, H. Jiang, X.H. Lu, F. Zhou, Y.F. Yin, W.M. and Ji, X.Y., 2009 Modification of montmorillonite surfaces using a novelcl ass of cationic gemini surfactants Journal of Colloid and Interface Science 332 1621 10.1016/j.jcis.2008.12.051.CrossRefGoogle Scholar