Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T07:36:11.942Z Has data issue: false hasContentIssue false

Mineralogy, geochemistry and genesis of smectite in pliocene volcaniclastic rocks of the doğanbey formation, beyşehir basin, Konya, Turkey

Published online by Cambridge University Press:  01 January 2024

Selahattin Kadir*
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480 Eskişehir, Turkey
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pliocene volcaniclastic lacustrine rocks of the Doğanbey formation in the Beyşehir region (central Anatolia) are composed of organic-matter-bearing claystone, clastic units and dolomite interbeds, suggesting an anaerobic, shallow swampy, lacustrine depositional environment. The depositional environment was subjected to periodic climatic change during which diagenesis occurred, and smectite, and locally palygorskite, were precipitated. Smectite flakes formed authigenically on feldspar and palygorskite fibers between dolomite rhombs and at the edges of smectite flakes. Increases in leaching of Na, K, Sr, Ba and Rb, increasing Al/Si ratios, and Fe with increasing degree of alteration reveal that hydration of volcaniclastic grains (feldspar, glass) by meteoric water — determined from O and H isotopic values — was the main cause of precipitation of beidellite and montmorillonite based on the tetrahedral charge/octahedral charge ratio, with average structural formulae of (Si7.72Al0.28)(Al3.20Fe0.53Mg0.25 Mn0.02Ti0.04) (Ca0.11Na0.09K0.11), and (Si7.88Al0.13)(Al3.18Fe0.53Mg0.18Mn0.02Ti0.05)(Ca0.11Na0.11K0.09), respectively. Therefore, the Doğanbey-area smectite is presumed to have formed by chemical weathering and dissolution-precipitation from feldspar and glass during diagenesis; palygorskite formed by direct precipitation from Mg-rich solutions during dolomitization, and by transformation from smectite in an alkaline lacustrine environment.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Abdioğlu, E. and Arslan, M., (2005) Mineralogy, geochemistry and genesis of bentonites of the Ordo area, NE Turkey Clay Minerals 40 131151 10.1180/0009855054010161.CrossRefGoogle Scholar
Akbulut, A. and Kadir, S., (2003) The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acıpayam basin, Denizli, SW Turkey Clays and Clay Minerals 51 279292 10.1346/CCMN.2003.0510304.CrossRefGoogle Scholar
Altaner, S.P. and Grim, R.E., (1990) Mineralogy, chemistry, and diagenesis of tuffs in the Sucker Creek Formation (Miocene), Eastern Oregon Clays and Clay Minerals 38 561572 10.1346/CCMN.1990.0380601.CrossRefGoogle Scholar
Baker, J.C. and Golding, S.D., (1992) Occurrence and palaeohydrological significance of authigenic kaolinite in the Aldebaran sandstone, Denison Trough, Queensland, Australia Clays and Clay Minerals 40 273279 10.1346/CCMN.1992.0400304.CrossRefGoogle Scholar
Barnard, P.C. Cooper, B.S., Illing, L.V. and Hobson, G.D., (1981) Oils and source rocks of the North Sea area Petroleum Geology of the Continental Shelf of North West Europe London Heyden & Son 169175.Google Scholar
Braiser, M.D., (1985) Microfossils London George Allen & Unwin 193 pp.Google Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., (1980) Quantitative X-ray analysis of clays Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 411438.CrossRefGoogle Scholar
Çelik, M. Temel, A. Orhan, H. and Tunoğlu, C., (1997) Economic importance of clay and aluminium sulphate occurrences in west-southwest of Konya, Turkey Turkish Journal of Earth Sciences 6 8594.CrossRefGoogle Scholar
Christidis, G.E., (1998) Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite in the islands of Milos and Kimolos, Aegean, Greece Clays and Clay Minerals 46 379399 10.1346/CCMN.1998.0460403.CrossRefGoogle Scholar
Christidis, G. and Dunham, A.C., (1997) Compositional variations in smectites. Part II: Alteration of acidic precursors, a case study from Milos Island, Greece Clay Minerals 32 253270 10.1180/claymin.1997.032.2.07.CrossRefGoogle Scholar
Christidis, G. and Scott, P.W., (1997) The origin and control of colour of white bentonites from the Aegean islands of Milos and Kimolos, Greece Mineralium Deposita 32 271279 10.1007/s001260050092.CrossRefGoogle Scholar
Christidis, G. Scott, P.W. and Marcopoulast, T., (1995) Origin of the bentonite deposits of Eastern Milos and Kimalos, Greece: geological, mineralogical and geochemical evidence. Clays and Clay Minerals 43 6377 10.1346/CCMN.1995.0430108.CrossRefGoogle Scholar
Clayton, R.N. and Mayeda, T., (1963) The use of bromine pentafluoide in the extraction of oxygen from oxides and silicates for isotopic analysis Geochimica et Cosmochimica Acta 27 4752 10.1016/0016-7037(63)90071-1.CrossRefGoogle Scholar
Colson, J. Cojan, I. and Thiry, M., (1998) A hydrological model for palygorskite formation in the Danian continental facies of the Provence Basin (France) Clay Minerals 33 333347 10.1180/000985598545516.CrossRefGoogle Scholar
Compton, J.S., (1991) Origin and diagenesis of clay minerals in the Monterey Formation, Santa Maria Basin Area, California Clays and Clay Minerals 39 449466 10.1346/CCMN.1991.0390501.CrossRefGoogle Scholar
Craig, H., (1961) Isotopic variations in meteoric waters Science 133 17021703 10.1126/science.133.3465.1702.CrossRefGoogle ScholarPubMed
Ece, and Çoban, F., (1994) Geology, occurrence and genesis of Eskişehir sepiolites, Turkey Clays and Clay Minerals 42 8192 10.1346/CCMN.1994.0420111.CrossRefGoogle Scholar
Galán, E. and Ferrero, A., (1982) Palygorskite-sepiolite clays of Lebrija, southern Spain Clays and Clay Minerals 30 191199 10.1346/CCMN.1982.0300305.CrossRefGoogle Scholar
Grim, R.E. and Güven, N., (1978) Bentonites, Geology, Mineralogy, Properties and Uses Amsterdam Elsevier 13137.Google Scholar
Güven, N. and Bailey, S.W., (1988) Smectites Hydrous Phyllosilicates Washington, D.C Mineralogical Society of America 497559 10.1515/9781501508998-018.CrossRefGoogle Scholar
Hynes, A., (1980) Carbonatization and mobility of Ti, Y, and Zr in Ascot Formation metabasalts, SE Quebec Contributions to Mineralogy and Petrology 75 7987 10.1007/BF00371891.CrossRefGoogle Scholar
Iijima, A. and Tada, R., (1981) Silica diagenesis of Neogene diatomaceous and volcaniclastic sediments in northern Japan Sedimentolgy 28 185200 10.1111/j.1365-3091.1981.tb01676.x.CrossRefGoogle Scholar
Inglès, M. and Anadón, P., (1991) Relationship of clay minerals to depositional environment in the non-marine Eocene Pontils Group, SE Ebro basin (Spain) Journal of Sedimentary Petrology 61 926939.Google Scholar
James, N.P., (1972) Holocene and Pleistocene calcareous crust (caliche) profiles: creteria for subaerial exposure Journal of Sedimentary Petrology 42 817836.Google Scholar
Jamoussi, F. Ben Aboud, A. and López-Galindo, A., (2003) Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits Clays Minerals 38 187199 10.1180/0009855033820088.CrossRefGoogle Scholar
Jones, J.B. and Segnit, E.R., (1971) The nature of opal I. Nomenclature and constituent phases Journal of Geological Society of Australia 18 5768 10.1080/00167617108728743.CrossRefGoogle Scholar
Kadir, S. and Karakaş, Z., (2002) Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey Neues Jahrbuch für Mineralogie, Abhandlungen 177 113132.CrossRefGoogle Scholar
Karakaş, Z. and Kadir, S., (1998) Mineralogical and genetic relationships between carbonate and sepiolite-palygorskite formations in the Neogene lacustrine Konya Basin, Turkey Carbonates and Evaporites 13 198206 10.1007/BF03176593.CrossRefGoogle Scholar
Keller, J. Jung, D. Burgath, K. and Wolff, F., (1977) Geologie und petrographie des Neogenen Kalkalkali-Vulkanismus von Konya (Erenler Dağ-Alaca Dağ-massiv, Zentral-Anatolien) Geologisches Jahrbuch Hessen 25 37117.Google Scholar
Knox, G.J., (1977) Caliche profile formation. Saldanha Bay (South Africa) Sedimentology 24 657674 10.1111/j.1365-3091.1977.tb00263.x.CrossRefGoogle Scholar
Kunze, G.W. Dixon, J.B. and Klute, A., (1986) Pretreatment for mineralogical analysis Methods of Soil Analysis, Part I, Physical and Mineralogical Methods 2 Madison, Wisconsin Soil Science Society of America 9199.Google Scholar
Lawrence, J.R. and Taylor, H.R., (1971) Deuterium and oxygen-18 correlation: Clay minerals and hydroxides in Quaternary soils compaired to meteoric water Geochimica et Cosmochimica Acta 35 9931003 10.1016/0016-7037(71)90017-2.CrossRefGoogle Scholar
Lawrence, J.R. and Taylor, H.R., (1972) Hydrogen and oxygen isotope systematics in weathering profiles Geochimica et Cosmochimica Acta 36 13771393 10.1016/0016-7037(72)90068-3.CrossRefGoogle Scholar
MacLean, W.H. and Kranidiotis, P., (1987) Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposits, Matagami, Quebec Economic Geology 2 951962 10.2113/gsecongeo.82.4.951.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford Oxford University Press 332 pp.Google Scholar
Mount, J.F. and Cohen, A.S., (1984) Petrology and geochemistry of rhizoliths from plio-Pleistocene fluvial and marginal lacustrine deposits, East Lake Turkana, Kenya Journal of Sedimentary Petrology 54 263275.Google Scholar
Murphy, J.B. and Hynes, A.J., (1986) Contrasting secondary mobility of Ti, P, Zr, Nb, and Y in two metabasaltic suites in the Appalachians Canadian Journal of Earth Sciences 23 11381144 10.1139/e86-112.CrossRefGoogle Scholar
Müller, G. Irion, G. and Förstner, U., (1972) Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment Naturwissenschaften 59 158164 10.1007/BF00637354.CrossRefGoogle Scholar
Özgüner, A.M., Büyüktemiz, M., Kılıç, M.F. and Demirci, A.R. (1987) Konya yöresi seramik hammaddeleri etüdü, 2 cilt. MTA Report No. 8371. Unpublished).Google Scholar
Rodas, M. Luque, F.J. Mas, R. and Garzon, M.G., (1994) Calcretes, palycretes and silcretes in the paleogene detrital sediments of the Dueo and Tajo Basins, central Spain Clay Minerals 29 273285 10.1180/claymin.1994.029.2.13.CrossRefGoogle Scholar
Savin, S.M. and Epstein, S., (1970) The oxygen and hydrogen isotope geochemistry of clay minerals Geochimica et Cosmochimica Acta 34 2542 10.1016/0016-7037(70)90149-3.CrossRefGoogle Scholar
Şenel, M. (2002) 1/500.000 scale geological map of Turkey — Konya, General Directorate of Mineral Research and Exploration of Turkey.Google Scholar
Sheppard, S.M.F., Valley, J.W. Taylor, H.P. and O’Neil, J.R., (1986) Characterization and isotopic variations in natural waters Stable Isotopes in High Temperature Geological Processes Washington, D.C Mineralogical Society of America 141162.Google Scholar
Sheppard, S.M.F. and Gilg, H.A., (1996) Stable isotope geochemisty of clay minerals Clay Minerals 31 124 10.1180/claymin.1996.031.1.01.CrossRefGoogle Scholar
Singer, A., (1979) Palygorskite in sediments: detrital, diagenetic, or neoformed — a critical review Geologische Rundschau 68 9961008 10.1007/BF02274683.CrossRefGoogle Scholar
Singer, A., Dixon, J.B. and Weed, S.B., (1989) Palygorskite and sepiolite group minerals Minerals in Soil Environments Madison, Wisconsin, USA Soil Science Society of America 829872.Google Scholar
Stamatakis, M.G. Hein, J.R. and Magganas, A.C., (1989) Geochemistry and diagenesis of Miocene lacustrine siliceous sedimentary and pyroclastic rocks, Mytilinii basin, Greece Sedimentary Geology 64 6578 10.1016/0037-0738(89)90084-5.CrossRefGoogle Scholar
Suludere, Y., Aydoğan, N., Özgüner, A.M. and Atilla, A. (1986) Toçak yaylası (Konya — Beyşehir — Damlapınar) kaolen sahası. Dülger Kışlağı (Konya — Seydişehir — Çavuş) ve Helaloğlu yaylası (Konya — Beyşehir — Doğanbey) bentonit sahaları maden jeolojisi raporu. MTA Report No 8071 (unpublished).Google Scholar
Taylor, H.P., (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition Economic Geology 69 843883 10.2113/gsecongeo.69.6.843.CrossRefGoogle Scholar
Taylor, H.P. and Barnes, H.L., (1979) Oxygen and hydrogen relationships in hydrothermal mineral deposits Geochemistry of Hydrothermal Ore Deposits 2nd New York Wiley 236277.Google Scholar
Teale, C.T. and Spears, D.A., (1986) The mineralogy and origin of some Silurian bentonites, Welsh Borderland, UK Sedimentology 33 757765 10.1111/j.1365-3091.1986.tb01974.x.CrossRefGoogle Scholar
Temel, A., Çelik, M. and Tunoğlu, C. (1995) Konya Batı-Güneybatısmda yeralan Neojen yaşlı volkanosedimater basenindeki kil oluşmları. VII National Clay Symposium, Ankara, pp. 3245.Google Scholar
Temel, A. Gündoğdu, N.M. and Gourgaud, A., (1998) Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, central Anatolia, Turkey Journal of Volcanology and Geothermal Research 85 447471 10.1016/S0377-0273(98)00066-3.CrossRefGoogle Scholar
Torres-Ruiz, J. López-Galindo, A. González-López, and Delgado, A., (1994) Geochemistry of Spanish sepiolite-palygorskite deposits: Genetic considerations based on trace elements and isotopes Chemical Geology 112 221245 10.1016/0009-2541(94)90026-4.CrossRefGoogle Scholar
Tucker, M.E. and Bathurst, R.G.C. (1990) Carbonate Diagenesis. Blackwell Scientific Publications, 1, Oxford, UK, 312 pp.CrossRefGoogle Scholar
Umut, M., Karabıyıkoğlu, M., Saraç, G., Bulut, V., Demirci, A.R., Erkan, M., Kurt, Z., Metin, S. and Özgönül, E. (1987) Tuzlukçu — Ilgın — Doğanhisar — Doğanbey Konya ili ve dolayının jeolojisi. MTA Report No. 8246, 38 p. (Unpublished).Google Scholar
Velde, B., (1995) Origin and Mineralogy of Clays. Clays and the Environment France Springer 10.1007/978-3-662-12648-6 334 pp.CrossRefGoogle Scholar
Weaver, C.E., (1989) Clays, Muds, and Shales Amsterdam Elsevier 819 pp.Google Scholar
Weaver, C.E. and Beck, K., (1977) Miocene of the S.E. United States: A Model for chemical sedimentation in a peri-marine environment. Special Issue Sedimentary Geology 17 1234 10.1016/0037-0738(77)90062-8.CrossRefGoogle Scholar
Winchester, J.A. and Floyd, P.A., (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements Chemical Geology 20 245252 10.1016/0009-2541(77)90057-2.CrossRefGoogle Scholar
Wright, V.P., (1984) The significance of needle-like calcite in a Lower Carboniferous paleosol Geological Journal 19 2332 10.1002/gj.3350190103.CrossRefGoogle Scholar
Wright, V.P. and Tucker, M.E. (1991) Calcretes. The International Association of Sedimentologists, Oxford, London, 352 pp.CrossRefGoogle Scholar
Yalçın, H. and Gümüşer, G., (2000) Mineralogical and geochemical characteristics of Late Cretaceous bentonite deposits of the Kelkit Valley Region, Northern Turkey Clay Minerals 35 807825 10.1180/000985500547250.CrossRefGoogle Scholar
Yui, T.F. and Chang, S.S., (1999) Formation conditions of vesicle/fissure-filling smectites in Penghu basalts: a stable-isotope assessment Clay Minerals 34 381393 10.1180/000985599546262.CrossRefGoogle Scholar
Zedef, V. Öncel, M.S. Arslan, M. Döyen, A. and Söğüt, A.R., (1994) Alpin tipi kromit yataklarına jeokimyasal açıdan farklı bir örnek: Yeşildağ (Beyşehir-Konya) kromit yatağı S.Ü.Mühendislik-Mimarlık Fakültesi Dergisi 9 2835.Google Scholar
Zielinski, R.A., (1982) The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome formation, Colorado, USA Chemical Geology 35 185204 10.1016/0009-2541(82)90001-8.CrossRefGoogle Scholar