Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T08:58:38.191Z Has data issue: false hasContentIssue false

Mineralogical Evolution of Di- and Trioctahedral Smectites in Highly Alkaline Environments

Published online by Cambridge University Press:  01 January 2024

Kerstin Elert*
Affiliation:
Department of Mineralogy and Petrology, University of Granada, Fuentenueva S/N, 18002, Granada, Spain
Eduardo Sebastián Pardo
Affiliation:
Department of Mineralogy and Petrology, University of Granada, Fuentenueva S/N, 18002, Granada, Spain
Carlos Rodriguez-Navarro
Affiliation:
Department of Mineralogy and Petrology, University of Granada, Fuentenueva S/N, 18002, Granada, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mineralogical evolution of di- and trioctahedral smectites (i.e. montmorillonite and saponite) exposed to high-pH environments has been studied to determine the influence of compositional differences on clay dissolution and the formation of new phases. The present study helps to gauge the effects of highly alkaline solutions on the swelling capacity of smectitic clays and experimental results are extrapolated to predict the behavior of smectite-rich soils in various technical applications such as nuclear-waste storage and architectural conservation. The present study revealed extensive dissolution of montmorillonite in 5 M NaOH or 5 M KOH solutions and the neoformation of various zeolites, thereby reducing the clay’s swelling capacity significantly. Saponite, in contrast, experienced less pronounced changes, including transformation into a randomly interstratified saponite-chlorite and a Si-rich amorphous phase. These changes only provoked a partial reduction in swelling capacity. The results imply that under repository conditions (e.g. alkaline environment caused by hyperalkaline fluids released during concrete leaching), the slow and limited transformation of saponite into corrensite-type minerals would be beneficial for preserving the clay’s swelling capacity and, therefore, its effectiveness as a sealing material. Conversely, the loss of swelling capacity as a result of zeolite formation in montmorillonite observed in the present experiments would limit the clay’s effectiveness as a sealing material in waste repositories. In the case of earthen architecture conservation, alkaline consolidation treatments aimed at reducing the soils’ swelling capacity and, thereby, improving water resistance, would only be effective for treating earthen structures made of soils rich in dioctahedral smectites. Soils containing trioctahedral smectites, in contrast, are not likely to improve their water resistance because the swelling capacity will only be partially reduced.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2015

References

Barrer, R.M., 1982 Hydrothermal Chemistry of Zeolites London Academic Press 360.Google Scholar
Barrer, R.M. Cole, J.F. and Sticher, H., 1968 Chemistry of soil minerals. Part V. Low temperature hydrothermal transformations of kaolinite Journal of the Chemical Society (A) 24752485.CrossRefGoogle Scholar
Barth-Wirsching, U. and Höller, H., 1989 Experimental studies on zeolite formation conditions European Journal of Mineralogy 1 489509.CrossRefGoogle Scholar
Bauer, A. and Velde, B., 1999 Smectite transformation in high molar KOH solutions Clay Minerals 34 259273.CrossRefGoogle Scholar
Bauer, A. Velde, B. and Berger, G., 1998 Kaolinite transformation in high molar KOH solutions Applied Geochemistry 13 619629.CrossRefGoogle Scholar
Beaufort, D. and Meunier, A., 1994 Saponite, corrensite and chlorite-saponite mixed-layers in Sancerre-Couy deep drillhole (France) Clay Minerals 29 4761.CrossRefGoogle Scholar
Beaufort, D. Baronnet, A. Lanson, B. and Meunier, A., 1997 Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France) American Mineralogist 82 109124.CrossRefGoogle Scholar
Becerro, A. Mantovani, M. and Escudero, A., 2009 Mineralogical stability of phyllosilicates in hyperalkaline fluids: Influence of layer nature, octahedral occupation and presence of tetrahedral Al American Mineralogist 94 11871197.CrossRefGoogle Scholar
Brady, P.V. and Walther, J.V., 1989 Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C Geochimica et Cosmochimica Acta 53 28232830.CrossRefGoogle Scholar
Breck, D.W., 1974 Zeolite Molecular Sieves — Structure, Chemistry and Use New York John Wiley & Sons, Inc. 771.Google Scholar
Brigatti, M.F. and Poppi, L., 1984 Crystal chemistry of corrensite: A review Clays and Clay Minerals 32 391399.CrossRefGoogle Scholar
Bristow, T.F. Kennedy, M.J. Derkowski, A. Droser, M.L. Jiang, G. and Creaser, R.A., 2009 Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation Proceedings of the National Academy of Sciences USA 106 1319013195.CrossRefGoogle ScholarPubMed
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319.CrossRefGoogle Scholar
Csicsery, S.M., 1984 Shape-selective catalysis in zeolites Zeolites 4 202312.CrossRefGoogle Scholar
Cuadros, J., 2008 Clay as sealing material in nuclear waste repositories Geology Today 24 99103.CrossRefGoogle Scholar
Cuevas Rodriguez, J., 1993 Comportamiento hidrotermal de las arcillas saponiticas de la cuenca de Madrid Estudios Geológicos 49 137146.CrossRefGoogle Scholar
Cuevas, J. Pelayo, M. Rivas, P. and Leguey, S., 1993 Characterization of Mg-clays from the Neogene of the Madrid Basin and their potential as backfill and sealing material in high level radioactive waste disposal Applied Clay Science 7 383406.CrossRefGoogle Scholar
Cuevas, J. Garralon, A. Ramirez, S. and Leguey, S., 2001 Hydrothermal alteration of a saponitic bentonite: Mineral reactivity and evolution of surface properties Clay Minerals 36 6174.CrossRefGoogle Scholar
Davis, M.E. and Lobo, R.F., 1992 Zeolite and molecular sieve synthesis Chemistry of Materials 4 756768.CrossRefGoogle Scholar
Doehne, E. and Price, C.A., 2010 Stone Conservation — An overview of current research Los Angeles, USA The Getty Conservation Institute 158.Google Scholar
Drief, A. Nieto, F. and Sanchez-Navas, A., 2001 Experimental clay-mineral formation from a subvolcanic rock by interaction with 1 M NaOH solution at room temperature Clays and Clay Minerals 49 92106.CrossRefGoogle Scholar
Drief, A. Martinez-Ruiz, F. Nieto, F. and Velilla Sanchez, N., 2002 Transmission Electron Microscopy evidence for experimental illitization of smectite in K-enriched seawater solution at 50°C and basic pH Clays and Clay Minerals 50 746756.CrossRefGoogle Scholar
Eberl, D.D. Velde, B. and McCormick, T., 1993 Synthesis of illite-smectite from smectite at earth surface temperature and high pH Clay Minerals 28 4960.CrossRefGoogle Scholar
Elert, K. Sebastian Pardo, E. and Rodriguez-Navarro, C., 2015 Alkaline treatment as an alternative method for the consolidation of earthen architecture Journal of Cultural Heritage 16 461469.CrossRefGoogle Scholar
Felsche, J. Luger, S. and Baerlocher, Ch., 1986 Crystal structures of the hydro-sodalite Na6[ALSiO4]6·8H2O and of the anhydrous sodalite Na6[ALSiO4]6 Zeolites 6 367372.CrossRefGoogle Scholar
Fernandez, R. Ruiz, A.I. and Cuevas, J., 2014 The role of smectite composition on the hyperalkaline alteration of bentonite Applied Clay Science 95 8394.CrossRefGoogle Scholar
Gaucher, E.C. and Blanc, P., 2006 Cement/clay interactions — a review: Experiments, natural analogues, and modeling Waste Management 26 776788.CrossRefGoogle ScholarPubMed
Gottardi, G., 1989 The genesis of zeolites European Journal of Mineralogy 1 479487.CrossRefGoogle Scholar
Groen, J.C. Pfeffer, L.A.A. and Perez-Ramirez, J., 2003 Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis Microporous and Mesoporous Materials 60 117.CrossRefGoogle Scholar
Hauff, P. (1981) Corrensite: Mineralogical Ambiguities and Geologic Significance. Geological Survey, Open-File Report 81-850, US Department of the Interior, 45 pp.CrossRefGoogle Scholar
Hensen, E.J.M. and Smit, B., 2002 Why clays swell Journal of Physical Chemistry B 106 1266412667.CrossRefGoogle Scholar
Huertas, F.J. Carretero, P. Delgado, J. Linares, J. and Samper, J., 2001 An experimental study on the ionexchange behaviour of the smectite of Cabo de Gata (Almeria, Spain): FEBEX bentonite Journal of Colloid and Interface Science 239 409416.CrossRefGoogle Scholar
Karamalidis, A.K. and Dzombak, D.A., 2010 Surface Complexation Modeling: Gibbsite New Jersey John Wiley & Sons, Inc. 294.CrossRefGoogle Scholar
Karnland, O. Olsson, S. Nilsson, U. and Sellin, P., 2007 Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions Physics and Chemistry of the Earth 32 275286.CrossRefGoogle Scholar
Kirov, G. and Filizova, L., 2012 Cationic hydration impact on zeolite formation and properties: A review and discussion Geochemistry, Mineralogy and Petrology — Sofia 49 6582.Google Scholar
Kovalchuk, G. Fernandez-Jimenez, A. and Palomo, A., 2008 Activacion alcalina de cenizas volantes. Relación entre el desarrollo mecánico resistente y la composición química de la ceniza Materiales de Construcción 58 3552.Google Scholar
Li, D. Yao, J. Wang, H. Hao, N. Zhao, D. Ratinac, K.R. and Ringer, S.P., 2007 Organic-functionalized sodalite nanocrystals and their dispersion in solvents Microporous and Mesoporous Materials 106 262267.CrossRefGoogle Scholar
Lorimer, G.W. Cliff, G., Wenk, H.R., 1976 Analytical electron microscopy of minerals Electron Microscopy in Mineralogy New York Springer-Verlag.Google Scholar
Meunier, A. Velde, B. and Griffault, L., 1998 The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage Clay Minerals 33 187196.CrossRefGoogle Scholar
Miyaji, F. Murakami, T. and Suyama, Y., 2009 Formation of linde F by KOH treatment of coal fly ash Journal of the Ceramic Society of Japan 117 619622.CrossRefGoogle Scholar
Moliner, M. (2012) Direct synthesis of functional zeolitic materials. International Scholarly Research Network Materials Science, 24 pp.CrossRefGoogle Scholar
Mosser-Ruck, R. and Chathelineau, M., 2004 Experimental transformation of Na,Ca-smectite under basic conditions at 150°C Applied Clay Science 26 259273.CrossRefGoogle Scholar
Mumpton, F.A., 1985 Using zeolites in agriculture Innovative Biological Technologies for Lesser Developed Countries Washington D.C. Congress of the US, Office of Technology Assessment.Google Scholar
Murakami, T. Sato, T. and Inoue, A., 1999 HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite American Mineralogist 84 10801087.CrossRefGoogle Scholar
Nagy, K.L., White, A.F. and Brantley, S.L., 1995 Dissolution and precipitation kinetics of sheet silicates Chemical Weathering Rates of Silicate Minerals Washington D.C. Mineralogical Society of America.Google Scholar
Newman, A.C.D. Brown, G., Newman, A.C.D., 1987 The chemical constitution of clay Chemistry of Clays and Clay Minerals London Longman Scientific & Technical.Google Scholar
Norrish, K., 1954 The swelling of montmorillonite Discussions of the Faraday Society 18 120134.CrossRefGoogle Scholar
Pokrovsky, O.S. and Schott, J., 2004 Experimental study of brucite dissolution and precipitation in aqueous solution: Surface speciation and chemical affinity control Geochimica et Cosmochimica Acta 68 3145.CrossRefGoogle Scholar
Pozo Rodríguez, M. and Casas Sainz de Aja, J., 1992 Mineralogía y sedimentología del yacimiento de saponita de Yuncos (Toledo) Estudios Geologicos 48 4765.CrossRefGoogle Scholar
Prieto, O. Vicente, M.A. and Bañares-Muñoz, A., 1999 Study of the porous solids obtained by acid treatment of a high surface area saponite Journal of Porous Materials 6 335–334.CrossRefGoogle Scholar
Ramirez, S. Cuevas, J. Vigil, R. and Leguey, S., 2002 Hydrothermal alteration of “La Serrata” bentonite (Almeria, Spain) by alkaline solutions Applied Clay Science 21 257269.CrossRefGoogle Scholar
Rouquerol, J. Rouquerol, F. and Sing, K.S.W., 1998 Absorption by Powders and Porous Solids San Diego Academic Press 467.Google Scholar
Roy, D.M., 1999 Alkali-activated cements. Opportunities and challenges Cement and Concrete Research 29 249254.CrossRefGoogle Scholar
Rozalen, M. Brady, P.V. and Huertas, F.J., 2009 Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics Journal of Colloid and Interface Science 333 474484.CrossRefGoogle ScholarPubMed
Sanchez, L. Cuevas, J. Ramirez, S. Ruiz de Leon, D. Fernandez, R. Vigil dela Villa, R. and Leguey, S., 2006 Reaction kinetics of FEBEX bentonite in hyperalkaline conditions resembling the cement-bentonite interface Applied Clay Science 33 125141.CrossRefGoogle Scholar
Siegel, M.D. Leckie, J.O. Park, S.W. Phillips, S.L. and Sewards, T., 1990 Studies of radionuclide sorption by clays in the Culebra dolomite at the Wipp site, southeastern New Mexico Technical Report SAND-89-2387 Albuquerque, NM (USA) Sandia National Labs.Google Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pierotti, R.A. Rouquerol, J. and Siemieniewska, T., 1985 Reporting physisorption data for gas/solid systems Pure and Applied Chemistry 57 603619.CrossRefGoogle Scholar
Singh, R. and Dutta, P.K., 1998 Stabilization of natural faujasite zeolite: possible role of alkaline earth metal ions Microporous and Mesoporous Materials 21 103109.CrossRefGoogle Scholar
Slaty, F. Khoury, H. Wastiels, J. and Rahier, H., 2013 Characterization of alkali activated kaolinitic clay Applied Clay Science 75–76 120125.CrossRefGoogle Scholar
Somasundaran, P. and Agar, G.E., 1967 The zero point of charge of calcite Journal of Colloid and Interface Science 24 400433.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford University Press 234.Google Scholar
Stumm, W., 1997 Reactivity at the mineral—water interface: Dissolution and inhibition Colloids and Surfaces A 120 143166.CrossRefGoogle Scholar
Suarez Barrios, M. Vicente-Rodriguez, M.A. and Martin Pozas, J.M., 1996 Intercalation compounds between nicotine and a high surface area saponite Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 24 263272.CrossRefGoogle Scholar
Sutarno, S. and Arryanto, Y., 2007 Synthesis of faujasite from fly ash and its application for hydrocracking of petroleum distillates Bulletin of Chemical Reaction Engineering and Catalysis 2 4551.CrossRefGoogle Scholar
Villar, M.V. Perez del Villar, L. Martin, P.L. Pelayo, M. Fernandez, A.M. Garralon, A. Cuevas, J. Leguey, S. Caballero, E. Huertas, F.J. Jimenez de Cisneros, C. Linares, J. Reyes, E. Delgado, A. Fernandez-Soler, J.M. and Astudillo, J., 2006 The study of Spanish clays for their use as sealing materials in nuclear waste repositories: 20 years of progress Journal of Iberian Geology 32 1536.Google Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187.CrossRefGoogle Scholar