Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T11:19:40.509Z Has data issue: false hasContentIssue false

Mineralogical Characterization of Ni-Bearing Smectites from Niquelândia, Brazil

Published online by Cambridge University Press:  01 January 2024

Eliana Satiko Mano*
Affiliation:
Escola Politécnica, Universidade de São Paulo, Av. Prof. Mello Moraes 2.373, 05508-900, São Paulo, Brazil
Laurent Caner
Affiliation:
Université de Poitiers, CNRS IC2MP-HydrASA UMR 7285, Poitiers, France
Sabine Petit
Affiliation:
Université de Poitiers, CNRS IC2MP-HydrASA UMR 7285, Poitiers, France
Arthur Pinto Chaves
Affiliation:
Escola Politécnica, Universidade de São Paulo, Av. Prof. Mello Moraes 2.373, 05508-900, São Paulo, Brazil
André Sampaio Mexias
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Geociências, UFRGS, Campus do Vale Av. Bento Gonçalves, 9500 - Porto Alegre - RS - Brazil
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nickel-lateritic ore is the most common source of nickel in Brazil. The Niquelândia deposit, located in State of Goias, is one of the most famous deposits due to the large amounts of nickel associated with both oxidized and mainly silicated ores. The terms oxidized and silicated ores are used to specify two different ores formed exclusively by oxides and silicate (clay) minerals, respectively. The aim of the present study was to characterize thoroughly the silicated ore to identify the Ni-bearing clay minerals and their crystal chemistry in support of developing a better mineral-processing method or optimizing the current one to improve Ni recoveries. X-ray diffraction, chemical analyses, scanning electron microscopy, and Fourier transform infrared (FTIR) spectroscopy demonstrated that nickel is associated with Ni-rich stevensite and to a lesser extent with Fe-rich montmorillonite. The crystal chemistry performed by FTIR spectroscopy revealed that Ni is present in the octahedral positions, substituting for Mg or Fe, which results in significant chemical and layer-charge heterogeneity in the samples. This heterogeneity seems to be responsible for reduction in Ni recoveries during the hydrometallurgical process.

Type
Article
Copyright
Copyright © Clay Minerals Society 2014

References

Andrieux, P. and Petit, S., 2010 Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series: Part I: Influence of experimental conditions Applied Clay Science 48 517.CrossRefGoogle Scholar
Bishop, J. Murad, E. and Dyar, M.D., 2002 The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy Clay Minerals 37 617628.CrossRefGoogle Scholar
Bosio, N.J. Hurst, V.J. and Smith, R.L., 1975 Nickeliferous nontronite, a 15 Å garnierite, at Niquelândia, Goiás, Brazil Clays and Clay Minerals 23 400403.CrossRefGoogle Scholar
Brindley, G.W. and de Souza, J.V., 1975 Nickel-containing montmorillonites and chlorites from Brazil, with remarks on schuchardtite Mineralogical Magazine 40 141152.CrossRefGoogle Scholar
Calarge, L. Lanson, B. Meunier, A. and Formoso, M.L., 2003 The smectitic minerals in a bentonite deposit from Melo (Uruguay) Clay Minerals 38 2534.CrossRefGoogle Scholar
Christidis, G.E. and Mitsis, I., 2006 A new Ni-rich stevensite from the ophiolite complex of Othrys, Central Greece Clays and Clay Minerals 54 653666.CrossRefGoogle Scholar
Coelho, A.C.V. Poncelet, G. and Ladrière, J., 2000 Nickel, iron-containing clay minerals from Niquela.nida deposit, Brazil — 1 Characterization Applied Clay Science 17 163181.CrossRefGoogle Scholar
Colin, F. Noack, J. Trescases, J. and Nahon, D., 1985 L’altération latéritique débutante des pyroxénites de Jacuba, Niquelândia, Brésil Clay Minerals 20 93113.CrossRefGoogle Scholar
Colin, F. Nahon, D. Trescases, J.J. and Melfi, A.J., 1990 Lateritic weathering of pyroxenites at Niquela.ndia, Goias, Brazil: The supergene behavior of nickel Economic Geology 85 10101023.CrossRefGoogle Scholar
Dalvi, A. Bacon, G. and Osborne, R., 2004 The past and the future of nickel laterites PDAC 2004 International convention, Toronto, Canada Toronto Prospectors and Developers Association of Canada 710.Google Scholar
de, O SMB, 1990 Os depósitos de Níquel Lateríticos do Brasil PhD thesis São Paulo, Brazil Universidade de São Paulo, Instituto de Geociências.Google Scholar
De Souza, J.V. Santos, P.S. and Santos, H.S., 1978 Caracterização mineralógica de algumas argilas niquelíferas brasileiras Revista Cerâmica 24 434446.Google Scholar
Decarreau, A. and Bonnin, D., 1986 Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: Experiments in partially reducing conditions Clay Minerals 21 861877.CrossRefGoogle Scholar
Decarreau, A. Colin, F. Herbillon, A. Manceau, A. Nahon, D. Paquet, H. Trauth-Badaud, D. and Trescases, J.J., 1987 Domain segregation in Ni-Fe-Mg smectites Clays and Clay Minerals 35 110.CrossRefGoogle Scholar
Decarreau, A. Petit, S. Martin, F. Farges, F. Vieillard, P. and Joussein, E., 2008 Hydrothermal synthesis, between 75 and 150°C, of high-charge, ferric nontronites Clays and Clay Minerals 56 322337.CrossRefGoogle Scholar
Desprairies, A., 1983 Relation entre le paramètre b des smectites et leur contenu en fer et magnesium. Application à l’étude des sédiments Clay Minerals 18 165175.CrossRefGoogle Scholar
Farmer, V.C. (1974) Infrared Spectra of Minerals. Monograph 4, The Mineralogical Society, London.CrossRefGoogle Scholar
Gates, W.P., 2005 Infrared spectroscopy and the chemistry of dioctahedral smectites The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides 13 125168.Google Scholar
Gaudin, A. Grauby, O. Noack, Y. Decarreau, A. and Petit, S., 2004 Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). I. XRD and multi-scale chemical approaches Clay Minerals 39 301315.CrossRefGoogle Scholar
Gaudin, A. Petit, S. Rose, J. Martin, F. Decarreau, A. Noack, Y. and Borschneck, D., 2004 The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches Clay Minerals 39 453467.CrossRefGoogle Scholar
Gaudin, A. Buatier, M.D. Beaufort, D. Petit, S. Grauby, O. and Decarreau, A., 2005 Characterization and origin of Fe3+-montmorillonite in deep-water calcareous sediments (Pacific Ocean, Costa Rica margin) Clays and Clay Minerals 53 452465.CrossRefGoogle Scholar
Gerard, P. and Herbillon, A.J., 1983 Infrared studies of Nibearing clay minerals of the kerolite-pimelite series Clays and Clay Minerals 31 143151.CrossRefGoogle Scholar
Hofmann, U. and Klemen, R., 1950 Verlust der Austauschfähigkeit von Lithiuminonenan Bentonitdurch Erhitzung Zeitschrift für anorganische und allgemeine Chemie 262 9599.CrossRefGoogle Scholar
Köster, H.M. Ehrlicher, U. Gilg, H.A. Jordan, R. Murad, E. and Onnich, K., 1999 Mineralogical and chemical characteristics of five nontronite and Fe-rich smectites Clay Minerals 34 579599.CrossRefGoogle Scholar
Madejová, J. Balán, E. and Petit, S., 2011 Application of vibrational spectroscopy to the characterization of phyllosilicates and other industrial minerals Advances in the Characterization of Industrial Minerals 9 171226.CrossRefGoogle Scholar
Marini, O.J. Fuck, R.A. Dardenne, M.A. Danni, J.C.M., de Almeida, F.F.M. and Hasui, Y., 1984 Província Tocantins — Setores Central e Sudeste O pré-cambriano do Brasil São Paulo Edgard Blucher 205264.Google Scholar
Moore, D.M. Reynolds, R.C. Jr., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Nahon, D. Colin, F. and Tardy, Y., 1982 Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite Clay Minerals 17 339348.CrossRefGoogle Scholar
Pálková, H. Madejová, J. and Righi, D., 2003 Acid dissolution of reduced-charge Li- and Ni-montmorillonites Clays and Clay Minerals 51 133142.CrossRefGoogle Scholar
Petit, S., 2005 Crystal-chemistry of talcs: a NIR and MIR spectroscopic approach The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides 13 4164.Google Scholar
Petit, S. Prot, T. Decarreau, A. Mosser, C. and Toledo-Groke, M.C., 1992 Crystallochemical study of a population of particles in smectites from a lateritic weathering profile Clays and Clay Minerals 40 436445.CrossRefGoogle Scholar
Petit, S. Righi, D. Madejová, J. and Decarreau, A., 1998 Layer charge estimation of smectites using infrared spectroscopy Clay Minerals 33 579591.CrossRefGoogle Scholar
Petit, S. Caillaud, J. Righi, D. Madejová, J. Elsass, F. and Köster, H.M., 2002 Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany Clay Minerals 37 283297.CrossRefGoogle Scholar
Petit, S. Martin, F. Wiewióra, A. De Parseval, P. and Decarreau, A., 2004 Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study American Mineralogist 89 319326.CrossRefGoogle Scholar
Petit, S. Righi, D. and Madejová, J., 2006 Infrared spectroscopy of NH4+-bearing and saturated clay minerals: A review of the study of layer charge Applied Clay Science 34 2230.CrossRefGoogle Scholar
Petit, S. Righi, D. and Decarreau, A., 2008 Transformation of synthetic Zn-stevensite to Zn-talc induced by the Hofmann-Klemen effect Clays and Clay Minerals 57 645654.CrossRefGoogle Scholar
Raous, S. Echevarria, G. Sterckeman, T. Hanna, K. Thomas, F. Martins, E.S. and Becquer, T., 2013 Potentially toxic metals in ultramafic mining materials: Identification of the main bearing and reactive phases Geoderma 192 111119.CrossRefGoogle Scholar
Wiewióra, A. Giresse, P. Petit, S. and Wilamowski, A., 2001 A deep-water glauconitization process on the Ivory Coast-Ghana marginal ridge (ODP site 959): determination of Fe3+-rich montmorillonite in green grains Clays and Clay Minerals 49 540558.CrossRefGoogle Scholar
Wilkins, R.W.T. and Ito, J., 1967 Infrared spectra of some synthetic talcs American Mineralogist 52 16491661.Google Scholar
Wilson, M., 1994 Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman & Hall.CrossRefGoogle Scholar