Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T03:00:34.568Z Has data issue: false hasContentIssue false

Mineralogical and Physico-Chemical Characterizations of Ferruginous Beidellite-Rich Clay from Agadir Basin (Morocco)

Published online by Cambridge University Press:  01 January 2024

L. Bouna*
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
B. Rhouta
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
L. Daoudi
Affiliation:
Laboratoire de Géosciences et Géoenvironnement, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
F. Maury
Affiliation:
CIRIMAT, Université de Toulouse, CNRS-UPS-INP, ENSIACET BP 44362, 4 allée Emile Monso, 31030, Toulouse, cedex 4, France
M. Amjoud
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
F. Senocq
Affiliation:
CIRIMAT, Université de Toulouse, CNRS-UPS-INP, ENSIACET BP 44362, 4 allée Emile Monso, 31030, Toulouse, cedex 4, France
M. C. Lafont
Affiliation:
CIRIMAT, Université de Toulouse, CNRS-UPS-INP, ENSIACET BP 44362, 4 allée Emile Monso, 31030, Toulouse, cedex 4, France
A. Jada
Affiliation:
Institut de Sciences des Matériaux de Mulhouse (IS2M), LRC 7228 — CNRS, 15 rue Jean Starcky, BP 2488, 68057 Mulhouse cedex, France
A. Aït Aghzzaf
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mechanism of formation of detrital, beidellite-rich clay occurring in the Agadir basin (Morocco) is well documented, but its detailed characterization is incomplete which limits its application. The aim of the present study was to provide further details of the mineralogical and physico-chemical characteristics of this clay. Bulk raw clay and its Na+-saturated, <2 μm fraction were characterized using chemical, structural, and thermal techniques. Measurements of induced streaming potential (e.g. particle charge) and of specific surface area and porous volume are reported. The raw clay contained carbonate and quartz as associated minerals along with phyllosilicates (<2 μm particle size). X-ray diffraction and scanning electron microscopy analyses showed that the <2 μm fraction was dominated by a dioctahedral smectite. Because dehydroxylation of this mineral occurred at 510°C, and because it re-expanded in ethylene glycol after Li+-saturation followed by heating at 240°C for 24 h, the mineral was shown to be a beidellite rather than montmorillonite. This assertion was further supported by 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectra showing predominantly negative charges in the tetrahedral sheets due to notable Al-for-Si substitutions. The chemical composition of the <2 μm fraction showed an Fe2O3 content which was ~7.52 wt.% greater than those of other beidellite occurrences but not so much that it would be identified as a nontronite. The absence of stretching and bending absorption bands corresponding to characteristic (Fe2OH) units in mid-infrared spectra and their corresponding fundamental overtones or combination bands in near-infrared spectra supported this notion. The structural formula of the beidellite in the present study was determined to be (Si7.51Al0.49)(Al2.99Fe0.68Mg0.33) (Ca0.03Na0.54Mg0.11)O20(OH)4, having dioctahedral ferruginous characteristics with almost 60% of the negative charge found in tetrahedral sheets. The cation exchange capacity determined from the structural formula was ~108 meq/100 g. The specific surface area and total pore volume were ~82.2 m2/g and 0.136 cm3/g, respectively. Interestingly, a detrital rather than a hydrothermal-alteration origin, as reported for other beidellite occurrences, explains its natural abundance and emphasizes the great interest in it.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

References

Alexandre, M. and Dubois, P., 2000 Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials Materials Science and Engineering 28 163.CrossRefGoogle Scholar
Barett, E.P. Joyner, L.G. and Halenda, P.F., 1951 The determination of pore volume and area distribution in porous substances Computation of nitrogen isotherms. Journal of the American Chemical Society 73 373380.CrossRefGoogle Scholar
Bergaya, F. Strolazzo, J.P. Trauth, N. and Van Damme, H., 1986 Caractérisation de la fraction fine de trois argiles de gisements exploités comme substance utile en France, Tunisie et Arabie Clay Minerals 21 965970.CrossRefGoogle Scholar
Bergmann, K. and O’Konski, C.T., 1963 A spectroscopic study of methylene blue monomer, dimer and complexes with montmorillonite Journal of Physics and Chemistry 67 21692177.CrossRefGoogle Scholar
Besson, G. Decarreau, A. Manceau, A. Sanz, J. Suquet, H., Decarreau, A., 1990 Organisation interne du feuillet Matériaux argileux: structures, propriétés et applications 525.Google Scholar
Bishop, J.L., 2005 Water on Mars and life Advances in Astrobiology and Biophysics 4 6596.CrossRefGoogle Scholar
Blain, P. Wayde, N.M. and Ray, L.F., 2011 Organosilane grafted acid-activated beidellite clay for the removal of nonionic alachlor and anionic imazaquin Applied Surface Science 257 55525558.Google Scholar
Bouna, L. Rhouta, B. Amjoud, M. Jada, A. Maury, F. Daoudi, L. and Senocq, F., 2010 Correlation between electrokinetic mobility and ionic dyes adsorption of Moroccan stevensite Applied Clay Science 48 527530.CrossRefGoogle Scholar
Brown, G. Brindley, G.W., Brindley, G.W. and Brown, G., 1980 X-ray procedures for clay minerals identification Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 305360.CrossRefGoogle Scholar
Brunauer, S. Emmet, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319.CrossRefGoogle Scholar
Butt, A., 1982 Micropaleontological bathymetry of the Cretaceous of Western Morocco Palaeogeography, Palaeoclimatology, Palaeoecology 37 235275.CrossRefGoogle Scholar
Caillère, S. Henin, S. and Rautureau, M., 1982 Minéralogie des Argiles: 1. Structures et Propriétés Physico-chimiques. 2. Classification et Nomenclatures. Masson, Paris 184.Google Scholar
Carriati, F. Erre, L. Micera, G. Piu, P. and Gessa, C., 1981 Water molecules and hydroxyl groups in montmorillonite as studied by near infrared spectroscopy Clays and Clay Minerals 29 157159.CrossRefGoogle Scholar
Casal, B. Merino, J. Ruiz-Hitzky, E. Gutierrez, E. and Alvarez, A., 1997 Characterization, pillaring and catalytic properties of a saponite from Vicálvaro, Madrid, Spain Clay Minerals 32 4154.CrossRefGoogle Scholar
Cenens, J. and Schoonheydt, R.A., 1988 Visible spectroscopy of methylene blue on hectorite, Laponite B and barasym in aqueous suspension Clays and Clay Minerals 36 214224.CrossRefGoogle Scholar
Chamley, H., 1989 Clay Sedimentology Berlin Springer 623.CrossRefGoogle Scholar
Daoudi, L. and Deconninck, J.F., 1994 Contrôles paléogéographique et diagéné tique des successions sédimentaires argileuses du bassin atlasique au Cré tacé (Haut Atlas occidental, Maroc) Journal of African Earth Sciences 18 123134.CrossRefGoogle Scholar
Daoudi, L. Rocha, F. Ouajhain, B. Dinis, J.L. Chafiki, D. and Callapez, P., 2008 Palaeoenvironmental significance of clay minerals in Upper Cenomanian-Turonian sediments of the western High Atlas Basin (Morocco) Clay Minerals 432 615630.CrossRefGoogle Scholar
Daoudi, L. Ouajhain, B. Rocha, F. Rhouta, B. and Chafiki, D., 2010 Comparative influence of burial depth on the clay mineral assemblage of the Agadir-Essaouira basin (Western High Atlas, Morocco) Clay Minerals 45 413427.CrossRefGoogle Scholar
Darder, M. Collila, M. and Ruiz-Hitzky, E., 2005 Chitosan-clay nanocomposites: application as electrochemical sensors Applied Clay Science 28 199208.CrossRefGoogle Scholar
deBoer, J.M. Lippens, B.C. Linsen, B.G. Broekhoff, J.C.P. Van der Heuvel, A. and Osinga, T.J., 1966 The t-curve of multimolecular N2 adsorption Journal of Colloid and Interface Science 21 405414.CrossRefGoogle Scholar
Delon, J.F. and Dellyes, R., 1967 Calcul du spectre de porosité des miné raux phylliteux Comptes Rendus Académie des Sciences SérieD 16611664.Google Scholar
Desprairies, A., 1983 Relation entre le parameter b des smectites et leur contenu en fer et magnesium Application à l’é tude des sediments. Clay Minerals 18 165175.CrossRefGoogle Scholar
Ewell, R.H. and Insley, H.V., 1935 Hydrothermal synthesis of kaolinite, dickite, beidellite and nontronite Journal of Research of the National Bureau of Standards 15 173186.CrossRefGoogle Scholar
Farmer, V.C., 1974 The Infrared spectra of Minerals London Mineralogical Society.CrossRefGoogle Scholar
Fialips, C.I. Huo, D. Yan, L. Wu, J. and Stucki, J.W., 2002 Effect of Fe oxidation state on the IR spectra of Garfield nontronite American Mineralogist 87 630641.CrossRefGoogle Scholar
Frost, R.L. Kloprogge, J.T. and Ding, A., 2002 Near-infrared spectroscopic study of nontronites and ferruginous smectite Spectrochimica Acta 58 16571668.CrossRefGoogle ScholarPubMed
Galhano, C. Rocha, F. and Gomes, C., 1999 Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the “Argilas de Aveiro” formation (Portugal) Clay Minerals 34 109116.CrossRefGoogle Scholar
Gates, W.P., Kloprogge, J.T., 2005 Infrared spectroscopy and the chemistry of dioctahedral smectites The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides Aurora, Colorado, USA The Clay Minerals Society 125168.Google Scholar
Goodman, B.A. Russel, J.D. and Fraser, A.R., 1976 A Mössbaauer and IR spectroscopic study of the structure of nontronite Clays and Clay Minerals 24 5359.CrossRefGoogle Scholar
Greene-Kelly, R., 1953 The identification of montmorillonoids in clays Journal of Soil Science 4 232237.CrossRefGoogle Scholar
Greene-Kelly, R., 1953 Irreversible dehydration in montmorillonite Part II. Clay Minerals Bulletin 1 5256.CrossRefGoogle Scholar
Greene-Kelly, R., 1955 Dehydration of montmorillonite minerals Mineralogical Magazine 30 604615.CrossRefGoogle Scholar
Hofmann, V.U. and Klemen, R., 1950 Verlust der Austauschfahigkeit von Lithiumionen an Bentonit durch Erhitzung Zeitschrift für Anorganische Chemie 262 9599.CrossRefGoogle Scholar
Holtzapffel, T., 1985 Les miné raux argileux: préparation, analyse diffractomé trique et dé termination Socié té Géologique du Nord 12 1543.Google Scholar
Isphording, W.C., 1975 Primary nontronite from the Venezuelan Guyana American Mineralogist 60 840848.Google Scholar
Jada, A. Debih, H. and Khodja, M., 2006 Montmorillonite surface properties modifications by asphaltenes adsorption Journal of Petroleum Science and Engineering 52 305316.CrossRefGoogle Scholar
Kloprogge, J.T., 2006 Spectroscopic studies of synthetic and natural beidellites: A review Applied Clay Science 31 165179.CrossRefGoogle Scholar
Kloprogge, J.T. Komarneni, S. and Amonette, J.E., 1999 Synthesis of smectite clay minerals: a critical review Clays and Clay Minerals 47 529554.CrossRefGoogle Scholar
Kloprogge, J.T. Komarneni, S. Yanagisawa, K. Fry, R. and Frost, L., 1999 Infrared Emission Spectroscopic study of the dehydroxylation via surface silanol groups of synthetic and natural beidellite Journal of Colloid and Interface Science 212 562569.CrossRefGoogle ScholarPubMed
Komarneni, S. Fyfe, C.A. and Kennedy, G.J., 1986 Detection of nonequivalent Si sites in sepiolite and palygorskite by solid-state 29 Si Magic-Angle Spining-Nuclear magnetic resonance Clays and Clay Minerals 34 99102.CrossRefGoogle Scholar
Komarneni, S. Fyfe, C.A. Kennedy, G. and Strobl, H., 1986 Characterization of synthetic and naturally occurring clays by 27 Al and 29 Si Magic-Angle Spinning NMR spectroscopy Journal of the American Ceramics Society 69 C.45C.47.CrossRefGoogle Scholar
Lagaly, G. Ogawa, M. Dékány, I., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Clay mineral interactions Handbook of Clay Science Amsterdam Elsevier 309377.CrossRefGoogle Scholar
Letaïef, S. Martín-Luengo, M.A. Aranda, P. and Ruiz-Hitzky, E., 2006 A colloidal route for delamination of layered solids: novel porous-clay nanocomposites Advanced Functional Materials 16 401409.CrossRefGoogle Scholar
Madejová, J., 2003 FTIR techniques in clay mineral studies Vibrational Spectroscopy 31 110.CrossRefGoogle Scholar
Madejová, J. Pentrák, M. Pálková, H. and Komadel, P., 2009 Near-infrared spectroscopy: A powerful tool in studies of acid-treated clay minerals Vibrational Spectroscopy 49 211218.CrossRefGoogle Scholar
Malla, P.B. and Douglas, L.A., 1987 Problems in identification of montmorillonite and beidellite Clays and Clay Minerals 35 232236.CrossRefGoogle Scholar
Mantin, I. and Glaeser, R., 1960 Fixation des ions cobalt hexamine par les montmorillonites acides Bulletin du Groupe Français des Argiles 50 8388.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L., 1956 Iron oxide removal from soils and clays by a dithionide-citrate system buffered with sodium bicarbonate Seventh National Conference on Clays and Clay Minerals 317327.CrossRefGoogle Scholar
Mermut, A.R. and Lagaly, G., 2001 Baseline studies of the Clay Minerals Society source clays: layer-charge determination and characteristics of those minerals containing 2:1 layers Clays and Clay Minerals 49 393397.CrossRefGoogle Scholar
Nadeau, P.H. Farmer, V.C. McHardy, W.J. and Bain, D.C., 1985 Compositional variations of the Unterrupsroth beidellite American Mineralogist 70 10041010.Google Scholar
Paquet, H., 1970 Evolution geodynamique des mineraux argileux dans les alterations et les sols des pays mediterraneans a saisons contrastees Memoires Service Carte Geologique Alsace Lorraine 30 1210.Google Scholar
Parthasarathy, G. Choudary, B.M. Sreedhar, B. Kunwar, A.C. and Srinivasan, R., 2003 Ferrous saponite from the Deccan Trap, India, and its application in adsorption and reduction of hexavalent chromium American Mineralogist 88 19831988.CrossRefGoogle Scholar
Pevear, D.R. and Mumpton, F.A., 1989 Quantitative Mineral Analysis of Clays Evergreen, Colorado, USA The Clay Minerals Society 171.Google Scholar
Plee, D.G.L. and Fripiat, J.J., 1987 Pillaring processes of smectites with and without tetrahedral substitutions Clays and Clay Minerals 35 8188.CrossRefGoogle Scholar
Post, J.L. and Borer, L., 2002 Physical properties of selected illites, beidellites and mixed-layer illite-beidellites from southwestern Idaho, and their infrared spectra Applied Clay Science 22 7791.CrossRefGoogle Scholar
Post, J.L. and Noble, P.L., 1993 The near-infrared combination band frequencies of dioctahedral smectites, micas, and illites Clays and Clay Minerals 41 639644.CrossRefGoogle Scholar
Post, J.L. Cupp, B.L. and Madsen, F.T., 1997 Beidellite and associated clays from the DeLamar Mine and Florida mountain area, Idaho Clays and Clay Minerals 45 240250.CrossRefGoogle Scholar
Rautureau, M. Caillère, S. and Hénin, S., 2004 Les Argiles seconde édition Paris Septima. 98.Google Scholar
Rhouta, B. Kaddami, H. Elbarqy, J. Amjoud, M. Daoudi, L. Maury, F. Senocq, F. Maazouz, A. and Gerard, J.-F., 2008 Elucidating the crystal-chemistry of Jbel Rhassoul stevensite (Morocco) by advanced analytical techniques Clay Minerals 43 393404.CrossRefGoogle Scholar
Ruiz-Hitzky, E. Aranda, P. Serratosa, J.M., Auerbach, S.M. Carrado, K.A. and Dutta, P.K., 2004 Clayorganic interactions: Organoclay complexes and polymerclay nanocomposites Handbook of Layered Materials New York Marcel Dekker, Inc. 91154.Google Scholar
Russel, J.D. Farmer, V.C. and Velde, B., 1970 Replacement of OH by OD in layer silicates and identification of the vibrations of these groups in infrared spectra Mineralogical Magazine 37 869879.CrossRefGoogle Scholar
Schutz, A. Stone, W.E.E. Poncelet, G. and Fripiat, J.J., 1987 Preparation and characterisation of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxylaluminum solutions Clays and Clay Minerals 35 251261.CrossRefGoogle Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pierotti, R. Rouquérol, J. and Siemieniewska, T., 1985 Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure and Applied Chemistry 57 603619.CrossRefGoogle Scholar
Stamm, R. and Thein, J., 1982 Sedimentation in the Atlas Gulf III: Turonian carbonates Geology of the Northwest African Continental Margin Berlin Springer-Verlag 459475.CrossRefGoogle Scholar
Thorez, J. (1976) Practical Identification of Clay Minerals. A Handbook for Teachers and Students in Clay Mineralogy (Lelotte, G., editor). Dison, Belgium.Google Scholar
Trauth, N., 1977 Argiles évaporitiques dans la sedimentation carbonate continentale et épicocontinentale tertiaires: Bassins de Paris, de Mormoiron et de Salinelles (France) et du Jbel Ghassoul (Maroc) Sciences Géologiques, Mémoires 49 195.Google Scholar
Velde, B., 1995 Origin and Mineralogy of Clays: Clays and the Environment Berlin, Heidelberg, New York Springer-Verlag 334.CrossRefGoogle Scholar
Weir, A.H. and Greene-Kelly, R., 1962 Beidellite American Mineralogist 47 137146.Google Scholar
Woessner, D.E., 1989 Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy American Mineralogist 74 203215.Google Scholar