Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T11:43:11.644Z Has data issue: false hasContentIssue false

Mineralogical and Isotopic Record of Diagenesis from the Opalinus Clay Formation at Benken, Switzerland: Implications for the Modeling of Pore-Water Chemistry in a Clay Formation

Published online by Cambridge University Press:  01 January 2024

Catherine Lerouge*
Affiliation:
BRGM, 3, avenue Claude Guillemin, F-45060, Orléans Cedex 2, France
Sylvain Grangeon
Affiliation:
BRGM, 3, avenue Claude Guillemin, F-45060, Orléans Cedex 2, France
Francis Claret
Affiliation:
BRGM, 3, avenue Claude Guillemin, F-45060, Orléans Cedex 2, France
Eric Gaucher
Affiliation:
BRGM, 3, avenue Claude Guillemin, F-45060, Orléans Cedex 2, France
Philippe Blanc
Affiliation:
BRGM, 3, avenue Claude Guillemin, F-45060, Orléans Cedex 2, France
Catherine Guerrot
Affiliation:
BRGM, 3, avenue Claude Guillemin, F-45060, Orléans Cedex 2, France
Christine Flehoc
Affiliation:
BRGM, 3, avenue Claude Guillemin, F-45060, Orléans Cedex 2, France
Guillaume Wille
Affiliation:
BRGM, 3, avenue Claude Guillemin, F-45060, Orléans Cedex 2, France
Martin Mazurek
Affiliation:
University of Bern, Institute of Geological Sciences, Baltzerstrasse 1+3, CH-3012, Bern, Switzerland
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Argillaceous rocks are considered to be a suitable geological barrier for the long-term containment of wastes. Their efficiency at retarding contaminant migration is assessed using reactive-transport experiments and modeling, the latter requiring a sound understanding of pore-water chemistry. The building of a pore-water model, which is mandatory for laboratory experiments mimicking in situ conditions, requires a detailed knowledge of the rock mineralogy and of minerals at equilibrium with present-day pore waters. Using a combination of petrological, mineralogical, and isotopic studies, the present study focused on the reduced Opalinus Clay formation (Fm) of the Benken borehole (30 km north of Zurich) which is intended for nuclear-waste disposal in Switzerland. A diagenetic sequence is proposed, which serves as a basis for determining the minerals stable in the formation and their textural relationships. Early cementation of dominant calcite, rare dolomite, and pyrite formed by bacterial sulfate reduction, was followed by formation of iron-rich calcite, ankerite, siderite, glauconite, (Ba, Sr) sulfates, and traces of sphalerite and galena. The distribution and abundance of siderite depends heavily on the depositional environment (and consequently on the water column). Benken sediment deposition during Aalenian times corresponds to an offshore environment with the early formation of siderite concretions at the water/sediment interface at the fluctuating boundary between the suboxic iron reduction and the sulfate reduction zones. Diagenetic minerals (carbonates except dolomite, sulfates, silicates) remained stable from their formation to the present. Based on these mineralogical and geochemical data, the mineral assemblage previously used for the geochemical model of the pore waters at Mont Terri may be applied to Benken without significant changes. These further investigations demonstrate the need for detailed mineralogical and geochemical study to refine the model of pore-water chemistry in a clay formation.

Type
Article
Copyright
Copyright © Clay Minerals Society 2014

References

Anderson, T.F. and Arthur, M.A., 1983 Stable isotopes of oxygen and carbon and their application to sedimentologic and paleonvironmental problems Stable Isotopes in Sedimentary Geology 10 1151.Google Scholar
Anderson, T.F. Popp, B.N. Williams, A.C. Ho, L.Z. and Hudson, J.D., 1994 The stable isotopic records of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: paleoenvironmental implications Journal of the Geological Society 151 125138.CrossRefGoogle Scholar
ANDRA, 2005 Evaluation de la faisabilite’ du stockage géologique en formation argileuse, Dossier 2005 Collection Les Rapports .Google Scholar
Baldermann, A. Warr, L.N. Grathoff, G. and Dietzel, M., 2013 The rate and mechanism of deep sea glauconite formation at the Ivory coast-Ghana marginal ridge Clays and Clay Minerals 61 258276.CrossRefGoogle Scholar
Baeyens, M.H. and Bradbury, B. e., 1997 Far-field sorption data bases for performance assessment of a L/ILW repository in an undisturbed Palfris marl host rock Switzerland Paul Scherrer Institut.Google Scholar
Birkhäuser, P. Roth, P. Meier, B. and Naef, H., 2001.3D-Seismik: Rä umliche Erkundung der mesozoischenSedimentschichten im Zürcher Weinland (3D seismics: exploration of the Mesozoic sediments in the Zürcher Weinland) Nagra Technical Report, NTB 00-03, Nagra, Wettingen, SwitzerlandGoogle Scholar
Blanc, P. Legendre, O. and Gaucher, E., 2007 Estimate of clay minerals amounts from XRD pattern modelling: the ARQUANT model Physics and Chemistry of the Earth 32 135144.CrossRefGoogle Scholar
Bowen, R., 1966 Oxygen isotopes as climatic indicators Earth-Science Reviews 2 199224.CrossRefGoogle Scholar
Brigaud, B. Pucéat, E. Pellenard, P. Vincent, B. and Joachimski, M.M., 2008 Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian-Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells Earth and Planetary Science Letters 273 5867.CrossRefGoogle Scholar
Canfield, D.E., 2001 Biogeochemistry of sulphur isotopes Stable Isotope Geochemistry 43 603636.Google Scholar
Carothers, W.W. Adami, L.H. and Rosenbauer, R.J., 1988 Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite Geochimica et Cosmochimica Acta 52 24452450.CrossRefGoogle Scholar
Claret, F. Sakharov, B.A. Drits, V.A. Velde, B. Meunier, A. Griffault, L. and Lanson, B., 2004 Clay minerals in the Meuse-Haute Marne Underground Laboratory (France): possible influence of organic matter on clay mineral evolution Clays and Clay Minerals 52 515532.CrossRefGoogle Scholar
Claret, F. Lerouge, C. Laurioux, T. Bizi, M. Conte, T. Ghestem, J.P. Wille, G. Sato, T. Gaucher, E.C. Giffaut, E. and Tournassat, C., 2010 Natural iodine in a clay formation: implications for iodine fate in geological disposals Geochimica et Cosmochima Acta 74 1629.CrossRefGoogle Scholar
Compton, J.S., 1992 Early diagenesis and the origin of diagenetic carbonate in sediment recovered from the Argo basin, northeastern Indian Ocean (Site 765) Proceedings of the Ocean Drilling Program, Scientific Results 123 7788.Google Scholar
Dera, G. Pucéat, E. Pellenard, P. Neige, P. Delsate, D. Joachimski, M. Reisberg, L. and Martinez, M., 2009 Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites Earth and Planetary Science Letters 286 198207.CrossRefGoogle Scholar
Drits, V.A. Lindgreen, H. Sakharov, B.A. and Salyn, A.S., 1997 Sequence structure transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales, North Sea Clay Minerals 35 351371.CrossRefGoogle Scholar
Elie, M. and Mazurek, M., 2008 Biomarker transformations as constraints for the depositional environment and for maximum temperatures during burial of Opalinus Clay and Posidonia Shale in northern Switzerland Applied Geochemistry 23 33373354.CrossRefGoogle Scholar
Epstein, S. Buchsbaum, R. Lowenstam, H.A. and Urey, H.C., 1953 Revised carbonate-water isotopic temperature scale Geological Society of America Bulletin 64 13151325.CrossRefGoogle Scholar
Erbacher, J. Friedrich, O. Wilson, P.A. Lehmann, J. and Weiss, W., 2011 Short-term warming events during the boreal Albian (mid-Cretaceous) Geology 39 223226.CrossRefGoogle Scholar
Evain, M., 1992 U-FIT: A Cell Parameter Refinement Program France IMN Nantes.Google Scholar
Froelich, P.N. Klinkhammer, G.P. Bender, M.L. Luedtke, N.A. Heath, G.R. Cullen, D. Dauphin, P. Hammond, D. Hartman, B. and Maynard, V., 1979 Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic suboxic diagenesis Geochimica et Cosmochima Acta 43 10751090.CrossRefGoogle Scholar
Gaucher, E. Robelin, C. Matray, J.M. Negrel, G. Gros, Y. Heitz, J.F. Vinsot, A. Rebours, H. Cassagnabere, A. and Bouchet, A., 2004 ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling Physics and Chemistry of the Earth 29 5577.CrossRefGoogle Scholar
Gaucher, E.C. Blanc, P. Bardot, F. Braibant, G. Buschaert, S. Crouzet, C. Gautier, A. Girard, J.P. Jacquot, E. Lassin, A. Negrel, G. Tournassat, C. Vinsot, A. and Altmann, S., 2006 Modelling the pore water chemistry of the Callovian-Oxfordian formation at a regional scale Comptes Rendus Geoscience 338 917930.CrossRefGoogle Scholar
Gaucher, E.C. Tournassat, C. Pearson, F.J. Blanc, P. Crouzet, C. Lerouge, C. and Altmann, S., 2009 A robust model for pore-water chemistry of clayrock Geochimica et Cosmochimica Acta 73 64706487.CrossRefGoogle Scholar
Guidotti, V., 1984 Micas in metamorphic rocks Micas 13 357467.CrossRefGoogle Scholar
Hendry, J.P., Horbury, A.D. and Robinson, A.G., 1993 Geological control on regional subsurface carbonate cementation: anisotopic paleohydrologic investigation of middle Jurassic limestones in Central England Diagenesis and Basin Development 231260.Google Scholar
Hubert, F. Caner, L. Meunier, A. and Lanson, B., 2009 Advances in characterization of soil clay mineralogy using X-ray diffraction: from decomposition to profile fitting European Journal of Soil Science 60 10931105.CrossRefGoogle Scholar
Hudson, J.D. Coleman, M.L. Barreiro, B.A. and Hollingworth, N.T.J., 2001 Septarian concretions from the Oxford Clay (Jurassic, England, UK): involvement of original marine and multiple external pore fluids Sedimentology 48 507531.CrossRefGoogle Scholar
Irwin, H. Curtis, C.D. and Coleman, M.L., 1977 Isotopic evidence for the source of diagenetic carbonates formed during burial of organic-rich sediments Nature 269 209213.CrossRefGoogle Scholar
Jenkyns, H.C. Gale, A.S. and Corfield, R.M., 1994 Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance Geological Magazine 131 134.CrossRefGoogle Scholar
Jenkyns, H.C. Jones, C.E. Gröcke, D.R. Hesselbo, S.P. and Parkinson, D.N., 2002 Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography Journal of the Geological Society 159 351374.CrossRefGoogle Scholar
Jones, C.E. and Jenkyns, H.C., 2001 Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous American Journal of Science 301 112149.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2010 Stability of bentonites in salt solutions II. Potassium chloride solution — Initial step of illitization? Applied Clay Science 49 98107.CrossRefGoogle Scholar
Kim, S.-T. and O’Neil, J.R., 1997 Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates Geochimica et Cosmochimica Acta 61 34613475.CrossRefGoogle Scholar
Koroleva, M. Alt-Epping, P. and Mazurek, M., 2011 Large-scale tracer profiles in a deep claystone formation (Opalinus Clay at Mont Russelin, Switzerland): Implications for solute transport processes and transport properties of the rock Chemical Geology 280 284296.CrossRefGoogle Scholar
Laenen, B. and De Craen, M., 2004 Eogenetic siderite as an indicator for fluctuations in sedimentation rate in the Oligocene Boom Clay Formation (Belgium) Sedimentary Geology 163 165174.CrossRefGoogle Scholar
Landais, P. Dohrmann, R. and Kaufhold, S., 2012 Overview of the clay mineralogy studies presented at the’ Clays in natural and engineered barriers for radioactive waste confinement’ meeting, Montpellier, October 2012 Clay Minerals 48 149152.CrossRefGoogle Scholar
Lanson, B. Sakharov, B.A. Claret, F. and Drits, V.A., 2009 Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray diffraction results using the multi-specimen method American Journal of Science 309 476516.CrossRefGoogle Scholar
Lécuyer, C. Picard, S. Garcia, J.-P. Sheppard, S.M.F. Grandjean, P. and Dromart, G., 2003 Thermal evolution of Tethyan surface waters during the Middle-Late Jurassic: evidence from δ18O values of marine fish teeth Paleoceanography 18 1076.CrossRefGoogle Scholar
Lécuyer, C. Reynard, B. and Martineau, F., 2004 Stable isotope fractionation between mollusc shells and marine waters from Martinique Island Chemical Geology 213 293305.CrossRefGoogle Scholar
Lerouge, C. Gaucher, E.C. Tournassat, C. Negrel, P. Crouzet, C. Guerrot, C. Gautier, A. Michel, P. Vinsot, A. and Buschaert, S., 2010 Strontium distribution and origins in a natural clayey formation (Callovian-Oxfordian. Paris Basin. France): A new sequential extraction procedure Geochimica et Cosmochimica Acta 74 29262942.CrossRefGoogle Scholar
Lerouge, C. Grangeon, S. Gaucher, E.C. Tournassat, C. Agrinier, P. Guerrot, C. Widory, D. Flehoc, C. Wille, G. Ramboz, C. Vinsot, A. and Buschaert, S., 2011 Mineralogical and isotopic record of biotic and abiotic diagenesis of the Callovian-Oxfordian clayey formation of Bure (France) Geochimica et Cosmochimica Acta 75 26332663.CrossRefGoogle Scholar
Lerouge, C. Grangeon, S. Fléhoc, C. Buschaert, S. Mazurek, M. Matray, J.-M. and Tournassat, C., 2012.Diagenetic carbonates in clay-rich marine formations Abstract: International meeting “Clays in Natural and Engineered Barriers for Radioactive Waste Confinement”, FranceGoogle Scholar
Lerouge, C. Vinsot, A. Grangeon, S. Wille, G. Flehoc, C. Gailhanou, H. Gaucher, E.C. Madé, B. Altmann, S. and Tournassat, C., 2013 Controls of Ca/Mg/Fe activity ratios in pore water chemistry models of the Callovian-Oxfordian Clay Formation Water Rock Interaction WRI 14, Procedia Earth and Planetary Science 7 475478.CrossRefGoogle Scholar
Ma, C. and Eggleton, R.A., 1999 Cation exchange capacity of kaolinite Clays and Clay Minerals 47 174180.Google Scholar
Madsen, F.T., 1998 Clay mineralogical investigations related to nuclear waste disposal Clay Minerals 33 109129.CrossRefGoogle Scholar
Manghnani, M.H. and Hower, J., 1964 Glauconite: cation exchange capacities and infrared spectra. Part I. The cation exchange capacity of glauconite The American Mineralogist 49 586598.Google Scholar
Martin, R.T., 1955 Reference chlorite characterization for chlorite identification in soil clays Clays and Clay Minerals 3 117145.CrossRefGoogle Scholar
Marschall, P. Horseman, S. and Gimmi, T., 2005 Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal Oil & Gas Science and Technology — Revue d’IFP Energies 60 121139.CrossRefGoogle Scholar
Mazurek, M. Hurford, A.J. and Leu, W., 2006 Unravelling the multi-stage burial history of the Swiss Molasse Basin: integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis Basin Research 18 2750.CrossRefGoogle Scholar
Mazurek, M. Gautschi, A. Marschall, P. Vigneron, G. Lebon, P. and Delay, J., 2008 Transferability of geoscientific information from various sources (study sites, underground rock laboratories, natural analogues) to support safety cases for radioactive waste repositories in argillaceous formations Physics and Chemistry of the Earth 33 95105.CrossRefGoogle Scholar
Mazurek, M. Alt-Epping, P. Bath, A. Gimmi, T. and Waber, H.N., 2009 Natural tracer profiles across argillaceous formations: The CLAYTRAC project OECD/NEA Rep. 6253 Paris OECD Nuclear Energy Agency.Google Scholar
Mazurek, M. Alt-Epping, P. Bath, A. Gimmi, T. Waber, H. N. Buschaert, S. Cannière, P. De Craen, M.D. Gautschi, A. Savoye, S. Vinsot, A. Wemaere, I. and Wouters, L., 2011 Natural tracer profiles across argillaceous formations Applied Geochemistry 26 10351064.CrossRefGoogle Scholar
McIlreath, I.A. and Morrow, DW e, 1990 Diagenesis St. John’s, Newfoundland Geological Association of Canada..Google Scholar
Merlet, C., 1994 An accurate computer correction program for quantitative electron probe microanalysis Mikrochimica Acta 114-115 363376.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1997 Structure, nomenclature, and occurrences of clay minerals X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 138195.Google Scholar
Mozley, P.S., 1989 The internal structure of carbonate concretions in mudrocks: a critical evaluation of the conventional concentric model of concretion growth Sedimentary Geology 103 8591.CrossRefGoogle Scholar
Müller-Vonmoos, M. Kahr, G. and Madsen, F.T., 1994 Intracrystalline swelling of mixed-layer illite-smectite in K-bentonites Clay Minerals 29 205213.CrossRefGoogle Scholar
Meunier, A., 2006 Why are clay minerals small? Clays and Clay Minerals 41 551566.CrossRefGoogle Scholar
Nagra, 2002 Project Opalinus Clay — Safety Report. Demonstration of Disposal Feasibility for Spent Fuel, Vitrified High-level Waste and Long-lived Intermediate-level Waste (Entsorgungsnachweis) Nagra Technical Report NTB 02-05, Nagra, Wettingen, Switzerland .Google Scholar
Odin, G.S. and Morton, A.C., 1988 Authigenic green particles from marine environments Diagenesis 43 213264.CrossRefGoogle Scholar
Ohmoto, H. Kaiser, C.J. and Geers, K.A., 1990 Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted basemetal deposits Stable Isotopes and Fluid Processes in Mineralization 23 70120.Google Scholar
ONDRAF/NIRAS, 2001 SAFIR-2: Second Safety Assessment and Interim Report ONDRAF/NIRAS, Brussels, Report NIROND 2001-06 E .Google Scholar
ONDRAF/NIRAS, 2009 The Long-term Safety strategy for the Geological Disposal of Radioactive Waste, second full draft, ONDRAF/NIRAS report NIROND-TR 2009-12E .Google Scholar
Pearson, F.J. Arcos, D. Gaucher, E.C. and Waber, H.N., 2003 Porewater chemistry and geochemical modelling Mont Terri Project — Geochemistry of water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory 67104.Google Scholar
Pearson, F.J. Tournassat, C. and Gaucher, E.C., 2011 Biogeochemical processes in a clay formation in situ Experiment: Part E - Equilibrium Controls on Chemistry of Pore Water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland Applied Geochemistry 26 9901008.CrossRefGoogle Scholar
Pellenard, P. Tramoy, R. Pucéat, E. Huret, E. Martinez, M. Bruneau, L. and Thierry, J., 2014 Carbon cycle and seawater palaeotemperature evolution at the Middle-Late Jurassic transiton, eastern Paris Basin (France) Marine and Petroleum Geology 53 3043.CrossRefGoogle Scholar
Peyaud, J.B. Pagel, M. Cabrera, J. and Pitsch, H., 2006 Mineralogical, chemical and isotopic perturbations induced in shale by fluid circulation in a fault at the Tournemire experimental site (Aveyron, France) Journal of Geochemical Exploration 90 923.CrossRefGoogle Scholar
Pin, C. and Bassin, C., 1992 Evaluation of a strontium specific extraction chromatographic method for isotopic analysis in geological materials Analytica Chimica Acta 269 249255.CrossRefGoogle Scholar
Pucéat, E. Lécuyer, C. Sheppard, S.M.F. Dromart, G. Reboulet, S. and Grandjean, P., 2003 Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels Paleoceanography 18 10291040.CrossRefGoogle Scholar
Raiswell, R., 1982 Pyrite texture, isotopic composition and the availability of iron American Journal of Science 82 12441263.CrossRefGoogle Scholar
Rosenbaum, J. and Sheppard, S.M., 1986 An isotopic study of siderites, dolomites and ankerites at high temperatures Geochimica et Cosmochimica Acta 50 11471150.CrossRefGoogle Scholar
Sakharov, B.A. Lindgreen, H. Salyn, A. and Drits, V.A., 1999 Determination of illite-smectite structures using multispecimen XRD profile fitting Clays and Clay Minerals 47 555566.CrossRefGoogle Scholar
Shannon, R.D., 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica A32 751767.CrossRefGoogle Scholar
Spillmann, T. Blümling, P. Manukyan, E. Marelli, S. Maurer, H.R. Greenhalgh, S.A. and Green, A.G., 2010 Geophysics applied to nuclear waste disposal investigations in Switzerland Near Surface Geoscience, first break 28 3950.Google Scholar
Spiro, B. Gibson, P.J. and Shaw, H.F., 1993 Eogenetic siderites in lacustrine oil shales from Queensland, Australia, a stable isotope study Chemical Geology 106 415427.CrossRefGoogle Scholar
Środoń, J. Morgan, D.J. Eslinger, E.V. Eberl, D.D. and Karlinger, M.R., 1986 Chemistry of illite/smectite and end-member illite Clays and Clay Minerals 34 368378.CrossRefGoogle Scholar
Swart, P.K. Burns, S.J. and Leder, J.J., 1991 Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique Chemical Geology 86 8996.Google Scholar
Thury, M., 2002 The characteristics of the Opalinus Clay investigated in the Mont Terri underground rock laboratory in Switzerland Comptes Rendus Physique 3 923933.CrossRefGoogle Scholar
Tournassat, C. Grangeon, S. Leroy, P. and Giffaut, E., 2013 Modeling specific pH-dependent sorption of divalent metals on montmorillonite surfaces. A review of pitfalls, recent archievements and current challenges American Journal of Science 313 395451.CrossRefGoogle Scholar
Tremosa, J. Arcos, D. Matray, J.M. Bensenouci, F. Gaucher, E.C. Tournassat, C. and Hadi, J., 2012 Geochemical characterization and modelling of the Toarcian/Domerian pore water at the Tournemire underground research laboratory Applied Geochemistry 27 14171431.CrossRefGoogle Scholar
Ufer, K. Kleeberg, R. Bergmann, J. and Dohrmann, R., 2012 Rietveld refinement of disordered illite-smectite mixed layered structures by a recursive algorithm. I: One-dimensional patterns Clays and Clay Minerals 60 507534.CrossRefGoogle Scholar
Ufer, K. Kleeberg, R. Bergmann, J. and Dohrmann, R., 2012 Rietveld refinement of disordered illite/smectite mixed layered minerals with a recursive algorithm. II: powder pattern refinement and quantitative phase analysis Clays and Clay Minerals 60 535552.CrossRefGoogle Scholar
Veizer, J., 1983 Trace elements and isotopes in sedimentary carbonates Carbonates: Mineralogy and Chemistry 11 265299.CrossRefGoogle Scholar
Velde, B., 1985 Clay Minerals: a Physico-chemical Explanation of their Occurrence 426 pp..Google Scholar
Vinsot, A. Appelo, C.A.J. Cailteau, C. Wechner, S. Pironon, J. De Donato, P. De Cannière, P. Mettler, S. Wersin, P. and Gabler, H.E., 2008 CO2 data on gas and pore water sampled in situ in the Opalinus Clay at the Mont Terri rock laboratory Physics and Chemistry of the Earth, Supplement 1 33 S54S60.CrossRefGoogle Scholar
Weetjens, E. Marivoet, J. Govaerts, J., Leterme, B., 2009.Preparatory Safety Assessment, Conceptual Model Description of the Reference Case External Report of the Belgian Nuclear Centre: SCK·CEN-ER-215Google Scholar
Wenk, H.-R. Voltolini, M. Mazurek, M. Van Loon, L.R. and Vinsot, A., 2008 Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus clay (Switzerland) Clays and Clay Minerals 56 285306.CrossRefGoogle Scholar
Wierzbowski, H. Rogov, M. Matyja, B. Kiselev, D. and Ippolitov, A., 2013 Middle-Upper Jurassic (Upper Callovian-Lower Kimmeridgian) stable isotope and elemental records of the Russian Platform: Indices of oceanographic and climatic changes Global and Planetary Change 109 196212.CrossRefGoogle Scholar
Wortmann, U.G. Bernasconi, S.M. and Boettcher, M.E., 2001 Hypersulfidic deep biosphere indicates extreme sulphur isotope fractionation during single-step microbial sulphate reduction Geology 29 647650.2.0.CO;2>CrossRefGoogle Scholar
Ziegler, P.A., Blundell, D.J. and Gibbs, A.D., 1990 Tectonic and palaeogeographic development of the North Sea rifts Evolution of North Sea Rifts Oxford, UK Clarendon Press 136.Google Scholar