Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T16:04:14.687Z Has data issue: false hasContentIssue false

Migration of Cations in Copper(II)-Exchanged Montmorillonite and Laponite Upon Heating

Published online by Cambridge University Press:  28 February 2024

C. Mosser
Affiliation:
Centre de Géochimie de la Surface, UPR 6251 du CNRS, 1, rue Blessig 67084 Strasbourg Cedex, France
L. J. Michot
Affiliation:
Laboratoire “Environment et Minéralurgie”, INPL-ENSG et URA 235 du CNRS, B.P. 40, 54501 Vandoeuvre Cedex, France
F. Vlllieras
Affiliation:
Laboratoire “Environment et Minéralurgie”, INPL-ENSG et URA 235 du CNRS, B.P. 40, 54501 Vandoeuvre Cedex, France
M. Romeo
Affiliation:
Institut de Physique et Chimie des Matériaux, UMR 46 du CNRS, 23, rue du Loess, 67037 Strasbourg Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two clay minerals, a dioctahedral, Na-montmorillonite from Wyoming and a trioctahedral, synthetic Na-laponite, were exchanged by cupric (Cu(II)) ions and subsequently heated at 100 °C intervals up to 500 °C. The resulting materials were analyzed by chemical analysis, X-ray diffraction (XRD), cation exchange capacity (CEC) measurements, combined thermogravimetric and differential thermal analysis (TGA-DTA), infrared (IR) spectroscopy, electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS). Montmorillonite exhibits a well-known Hoffmann-Klemen effect in that, when heated, cupric (Cu) ions migrate into the lacunae of the octahedral sheet, where they compensate the negative charge deficit of the clay layer. In the case of laponite, CEC measurements and spectroscopic measurements reveal that Cu ions migrate into the octahedral sheet where they replace Li and Mg ions. After heating at 200 °C, approximately half the interlayer Cu ions are exchanged. The exchange appears to be 1 Cu for 1 Li, resulting in a slight decrease of the negative charge of the layer. After heating at 300 °C, the remaining Cu ions are exchanged by either 1 Mg or 2 Li, which does not result in any further charge reduction. At 400 °C, some of the extracted Mg remigrates into the structure and exchanges some Li (1 Mg for 2 Li). The final product at 400 or 500 °C is then a Li-laponite with Cu(II) in the octahedral sheet.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Alvero, R. Alba, M.D. Castro, M.A. and Trillo, J.M., 1994 Reversible migration of lithium in montmorillonites J Phys Chem 98 78487853 10.1021/j100083a017.CrossRefGoogle Scholar
Bérend, I. Cases, J.M. François, M. Uriot, J.P. Michot, L. Masion, A. and Thomas, F., 1995 Mechanism of adsorption-desorption of water vapor by homoionic montmorillonite: 2. The Li+, Na+, K+, Rb+ and Cs+ exchanged forms Clays Clay Miner 43 324336 10.1346/CCMN.1995.0430307.CrossRefGoogle Scholar
Besson, G. Decarreau, A. Manceau, A. Sanz, J. Suquet, H. and Decarreau, A., 1990 Organisation interne du feuillet Matériaux argileux, structure, propriétés, applications 1162.Google Scholar
Brindley, G.W. and Lemaitre, J., 1987 Thermal oxidation and reduction reactions of clay minerals Chemistry of clays and clay minerals. Mineral Soc Monograph 6 319370.Google Scholar
Calvet, R. and Prost, R., 1971 Cation migration into empty octahedral sites and surface properties of clays Clays Clay Miner 19 175186 10.1346/CCMN.1971.0190306.CrossRefGoogle Scholar
Cases, J.M. Bérend, I. Besson, G. François, M. Uriot, J.P. Thomas, F. and Poirier, J.E., 1992 Mechanism of adsorption-desorption of water vapor by homoionic montmorillonite: 1. The sodium exchanged form Langmuir 8 27302739 10.1021/la00047a025.CrossRefGoogle Scholar
Cases, J.M. Delon, J.F. François, M. and Mercier, R., 1981 Organisation de l’eau dans les milieux poreux ou concentrés en solides [Compte-rendu de fin d’étude d’une recherche financée par la Délégation Générale à la Recherche Scientifique et Technique] Nancy, France INPL.Google Scholar
Farmer, V.C. and Russell, J.D., 1971 Interlamellar complexes in layer silicates. The structure of water in lamellar ionic solutions Trans Faraday Soc 67 27372749 10.1039/tf9716702737.CrossRefGoogle Scholar
Greene-Kelly, R., 1953 Irreversible dehydration in montmorillonite Clay Miner Bull 2 5256 10.1180/claymin.1953.002.9.09.CrossRefGoogle Scholar
Greene-Kelly, R., 1955 Dehydration of the montmorillonite minerals Mineral Mag 30 604615.Google Scholar
Heller-Kallai, L. and Mosser, C., 1995 Migration of Cu ions in Cu montmorillonite heated with and without alkali halides Clays Clay Miner 43 738743 10.1346/CCMN.1995.0430610.CrossRefGoogle Scholar
Hofmann, U. and Kiemen, R., 1950 Verlust der Austauschfähigkeit von Lithium Ionen an Bentonit durch Erhitzung T Anorg Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Kreit, J.F. Shainberg, I. and Herbillon, A.J., 1982 Hydrolysis and decomposition of hectorite in dilute salt solutions Clays Clay Miner 30 223231 10.1346/CCMN.1982.0300309.CrossRefGoogle Scholar
McBride, M.B., 1982 Hydrolysis and dehydration reactions of exchangeable Cu2+ on hectorite Clays Clay Miner 30 200206 10.1346/CCMN.1982.0300306.CrossRefGoogle Scholar
McBride, M.B. and Mortland, M.M., 1974 Copper(II) interactions with montmorillonite: Evidence from physical methods Soil Sci Soc Am Proc 38 408414 10.2136/sssaj1974.03615995003800030014x.CrossRefGoogle Scholar
Mosser, C. Mestdagh, M. Decarreau, A. and Herbillon, A.J., 1990 Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites Clay Miner 25 271282 10.1180/claymin.1990.025.3.03.CrossRefGoogle Scholar
Mosser, C. Mosser, A. Romeo, M. Petit, S. and Decarreau, A., 1992 Natural and synthetic copper phyllosilicates studied by XPS Clays Clay Miner 40 593599 10.1346/CCMN.1992.0400514.CrossRefGoogle Scholar
Petit, S., 1990 Etude cristallochimique de kaolinites ferrifères et cuprifères de synthèse (150-250 °C) [Thèse de Doctorat] Poitiers, France Univ de Poitiers.Google Scholar
Petit, S. Decarreau, A. Mosser, C. Ehret, G. and Grauby, O., 1995 Hydrothermal synthesis (250 °C) of copper-substituted kaolinites Clays Clay Miner 43 482494 10.1346/CCMN.1995.0430413.CrossRefGoogle Scholar
Poinsignon, C., 1978 Etude de l’eau d’hydratation des cations compensateurs de la montmorillonite [Thèse Docteur es Sciences] Nancy, France INPL.Google Scholar
Rémy, J.C. and Orsini, L., 1976 Utilisation du chlorure de cobal-tihexamine pour la détermination simultanée de la capacité d’échange et des bases échangeables dans les sols Sciences du Sol 4 269275.Google Scholar
Stadler, M. and Schindler, P.W., 1993 Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite Clays Clay Miner 41 288296 10.1346/CCMN.1993.0410303.CrossRefGoogle Scholar
Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F. and Muilenberg, G.E.. 1978. Handbook of X-ray photoelectron spectroscopy. Muillenberg, G.E., editor. Minnesota: Perkin-Elmer Corporation, Physical Electronics Division. 190 p.Google Scholar