Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:16:27.506Z Has data issue: false hasContentIssue false

Mercury Adsorption by Sulfurized Fibrous Silicates

Published online by Cambridge University Press:  02 April 2024

L. Daza
Affiliation:
Instituto de Catálisis y Petroleoquímica, C.S.I.C. Serrano 119, 28006 Madrid, Spain
S. Mendioroz
Affiliation:
Instituto de Catálisis y Petroleoquímica, C.S.I.C. Serrano 119, 28006 Madrid, Spain
J. A. Pajares
Affiliation:
Instituto del Carbón, C.S.I.C., La Corredoria, s/n. Oviedo, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To eliminate mercury vapor from gas streams, three major methods are used: condensation, absorption, and adsorption. This work deals with adsorption, using elemental sulfur as an active phase supported on sepiolite and palygorskite fibrous clays. Sulfur loads of 5–30% were deposited by catalytic oxidation of hydrogen sulfide at temperatures of <200°C, the clays acting first as a catalyst of the reaction and then as a carrier of the obtained sulfur. The ability of the sulfurized clay adsorbents to retain mercury was studied at 45°C and 1 mm Hg pressure. The high values found, about 4 g Hg/g S supported on clays, compared with 1.69 g Hg/g S on activated carbon under the same conditions are related to a more appropriate pore size distribution, with more of the pore widths >6 nm for the sulfurized silicates. Also, the allotropic state of the deposited sulfur, where Sπ (octo-catena) is better than Sλ (octo-cycle), may also be a contributing factor.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

ACGIH, 1987 Threshold limit values and biological exposure indices for 1987–1988.Google Scholar
Anonymou., 1953 Gmelins Handbuch Der Anorganischen Chemi 569.Google Scholar
Brunauer, S., Skalny, J., Odler, I., Modry, S. and Soata, M., 1973 Complete pore structure analysis Proc. Int. Symp. RILEM/IUPAC 26.Google Scholar
Daza, L., 1986 Silicatos sulfurados para elimination de vapores de mercurio 20.Google Scholar
Daza, L., Mendioroz, S., Pajares, J. A. and Palacios, J. M., 1987 Sulphurized diatomite as a potential demercuriating agent React. Solids 3 351364.CrossRefGoogle Scholar
Daza, L., Mendioroz, S. and Pajares, J. A., 1987 Sulphurized, attapulgites as mercury vapour adsorbents Proc. 31st Int. Cong. of Pure and Applied Chem. .Google Scholar
Daza, L., Mendioroz, S. and Pajares, J. A., 1989 Influence of texture and chemical composition on sulfur deposition onto sepiolites Appl. Clay Sci. 4 389402.CrossRefGoogle Scholar
Klein, J. and Henning, K. D., 1984 Catalytic oxidation of hydrogen sulfide on activated carbon Fuel 63 10641067.CrossRefGoogle Scholar
Langmyhr, F. J. and Paus, P. E., 1968 The analysis of Inorganic Siliceous materials by AAS and the HF decomposition technique. Part 1 Anal. Chim. Acta 43 397408.CrossRefGoogle Scholar
Lovett, W. D. and Cunniff, F.T., 1974 Air pollution control by activated carbon Chem. Eng. Progr. 70 4347.Google Scholar
Mendioroz, S., Daza, L. and Pajares, J. A. (1986) Proce-dimiento de fabrication de un adsorbente azufrado util para retener vapores de metal como mercurio: Spanish Patent 551862, Feb. 11, 1986, 10 pp.Google Scholar
Meyer, B., 1964 Solid allotropes of sulfur Chem. Rev. 64 429451.CrossRefGoogle Scholar
Pierce, C., 1953 Computation of pore sizes from physical adsorption data J. Phys. Chem. 57 149152.CrossRefGoogle Scholar
Sinha, R. K. and Walker, P. L., 1972 Removal of mercury by sulfurized carbons Carbon 10 754756.CrossRefGoogle Scholar
Steijns, M., 1976 The catalytic oxidation of hydrogen sulfide on porous materials Enschede, The Netherlands Twente University of Technology 55.Google Scholar
Steijns, M. and Mars, P., 1974 The role of sulfur trapped in micropores in the catalytic partial oxidation of hydrogen Sulfide with Oxygen J. Catal. 35 1117.CrossRefGoogle Scholar
Steijns, M., Peppelenbos, A. and Mars, P., 1976 Mercury chemisorption by sulfur adsorbed in porous materials J. Colloid Interface Sci. 57 181186.CrossRefGoogle Scholar
Tuller, W. N., 1954 The Sulfur Data Book New York McGraw-Hill Inc. 67.Google Scholar