Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:17:38.532Z Has data issue: false hasContentIssue false

Mechanism of Acid Activation of Magnesic Palygorskite

Published online by Cambridge University Press:  02 April 2024

F. Gonzalez
Affiliation:
Departamento de Química, Universidad de Cantabria, Avda. de los Castros s/n, 39005-Santander, Spain
C. Pesquera
Affiliation:
Departamento de Química, Universidad de Cantabria, Avda. de los Castros s/n, 39005-Santander, Spain
I. Benito
Affiliation:
Departamento de Química, Universidad de Cantabria, Avda. de los Castros s/n, 39005-Santander, Spain
S. Mendioroz
Affiliation:
Instituto de Catálisis y Petroleoquímica, C.S.I.C., Serrano 119, 28006-Madrid, Spain
J. A. Pajares
Affiliation:
Instituto de Catálisis y Petroleoquímica, C.S.I.C., Serrano 119, 28006-Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper compares the texture of palygorskite after acid leaching with that of the product after extraction silica is removed. These effects were evaluated on the basis of nitrogen adsorption-desorption and mercury penetration porosimetry. Acid leaching at reflux temperature with 2 N HCl resulted in an increase in surface area from 138 to 399 m2/g, due to a partial (~50%) dissolution of the octahedral sheet and the creation of microporosity. This microporosity disappeared if the silica generated by the leaching was removed. The surface area also decreased from 399 to 214 m2/g, and the pore volume decreased from 0.538 to 0.507 cm3/g. The microporosity must therefore have been due to texture development in the generated silica.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

References

Bradley, W. F., 1940 The structural scheme of attapulgite Amer. Mineral 25 405410.Google Scholar
Broekhoff, J. C. P. and De Boer, J. H., 1967 Studies on pore systems in catalysts J. Cat 9 814.CrossRefGoogle Scholar
Corma, A., Mifsud, A. and Sanz, E., 1987 Influence of the chemical composition and textural characteristic of palygorskite on the acid leaching of octahedral cations Clay Miner 22 225232.CrossRefGoogle Scholar
González Martínez, F., 1988 Palygorskitas españolas. Aplicabilidad en adsorción y catálisis Oviedo, Spain University of Oviedo.Google Scholar
Gregg, S. J. and Sing, K. S. W., 1982 Adsorption Surface Area and Porosity London Academic Press.Google Scholar
Lecloux, A. and Pirard, J. P., 1979 The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids J. Colloid Interface Sci 70 265281.CrossRefGoogle Scholar
Lippens, B. C. and De Boer, J. H., 1965 Studies on pore systems in catalysts. V. The t method J. Cat 4 319323.CrossRefGoogle Scholar
Makki, M. B. and Flicoteaux, C., 1976 Activation des argiles Bull. Soc. Chim. Fr 1 1522.Google Scholar
Martín Pozas, J. M., Martín-Vivaldi, J. and Sanchez Camazano, M., 1983 El yacimiento de Sepiolita-Paligorskita de Sacramenia, Segovia Bol. Geol. Min 94–2 113120.Google Scholar
Nathan, Y., 1968 Dissolution of palygorskite by hydrochloric acid Israel J. Chem 6 275283.CrossRefGoogle Scholar
Pierce, C., 1953 Computation of pore sizes from physical adsorption data J. Phys. Chem 57 149152.CrossRefGoogle Scholar
Ross, C. S. and Hendricks, S. B., 1945 Minerals of the montmorillonite group; their origin and relation to soils and clays U.S. Geol. Surv. Prof. Pap 205–B 2379.Google Scholar